15.已知f(logax)=$\frac{a}{{a}^{2}-1}$(x-$\frac{1}{x}$),(0<a<1)
(1)求f(x)的解析式;
(2)判斷并證明f(x)的奇偶性與單調(diào)性;
(3)若不等式f(3t2-1)+f(4t-k)>0對(duì)任意t∈[1,3]都成立,求實(shí)數(shù)k的取值范圍.

分析 (1)利用換元法求函數(shù)解析式;
(2)直接利用函數(shù)的奇偶性與單調(diào)性的定義證明;
(3)由函數(shù)的性質(zhì)把不等式轉(zhuǎn)化為3t2-1>-4t+k對(duì)任意t∈[1,3]都成立,分離參數(shù)k,再由配方法求出二次函數(shù)的最值得答案.

解答 解:(1)令logax=t,則x=at
由f(logax)=$\frac{a}{{a}^{2}-1}$(x-$\frac{1}{x}$),得$f(t)=\frac{a}{{a}^{2}-1}({a}^{t}-{a}^{-t})$,
∴$f(x)=\frac{a}{{a}^{2}-1}({a}^{x}-{a}^{-x})$;
(2)函數(shù)f(x)為奇函數(shù)且為R上的單調(diào)增函數(shù).
證明如下:
∵f(x)的定義域?yàn)镽,且$f(-x)=\frac{a}{{a}^{2}-1}({a}^{-x}-{a}^{x})=-\frac{a}{{a}^{2}-1}({a}^{x}-{a}^{-x})=-f(x)$,
∴f(x)為奇函數(shù).
當(dāng)0<a<1時(shí),a2-1<0,∴$\frac{a}{{a}^{2}-1}<0$,任取x1,x2∈(-∞,+∞),且x1<x2,則${a}^{{x}_{1}}$>${a}^{{x}_{2}}$,
$f({x}_{1})-f({x}_{2})=\frac{a}{{a}^{2}-1}({a}^{{x}_{1}}-{a}^{{x}_{2}}+{a}^{-{x}_{2}}-{a}^{-{x}_{1}})$=$\frac{a}{{a}^{2}-1}({a}^{{x}_{1}}-{a}^{{x}_{2}})(1+\frac{1}{{a}^{{x}_{1}}•{a}^{{x}_{2}}})$<0.
∴f(x1)<f(x2),又x1<x2
∴f(x)為實(shí)數(shù)集上的單調(diào)增函數(shù);
(3)不等式f(3t2-1)+f(4t-k)>0對(duì)任意t∈[1,3]都成立,
即不等式f(3t2-1)>f(-4t+k)對(duì)任意t∈[1,3]都成立,
即3t2-1>-4t+k對(duì)任意t∈[1,3]都成立,
也就是3t2+4t-1>k對(duì)任意t∈[1,3]都成立,
∵$3{t}^{2}+4t-1=3({t}^{2}+\frac{4}{3}t)-1=3(t+\frac{2}{3})^{2}-\frac{7}{3}$在[1,3]上的最小值為6,
∴k<6.
∴實(shí)數(shù)k的取值范圍為(-∞,6).

點(diǎn)評(píng) 本題考查恒成立問題,考查了函數(shù)單調(diào)性與奇偶性的性質(zhì),訓(xùn)練了分離參數(shù)法求字母的取值范圍,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江西省南昌市高二文下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)函數(shù),若,則=___________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$\overrightarrow a,\overrightarrow b$均為單位向量,它們的夾角為$\frac{π}{3}$,則$|{\overrightarrow a+\overrightarrow b}|$等于( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.?dāng)?shù)列{an}滿足a1=$\frac{4}{3},{a_{n+1}}-1={a_n}({a_n}-1),n∈{N^*}$且Sn=$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}$,則Sn的整數(shù)部分的所有可能值構(gòu)成的集合是{0,1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若角2α的終邊在y軸的非負(fù)半軸上,則角α的終邊位于第一、三象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)是定義在R上的函數(shù),圖象關(guān)于y軸對(duì)稱,且在x∈[0,+∞)單調(diào)遞增.f(-2)=1,那么f(x)≤1的
解集是(  )
A.[-2,2]B.(-1,2)C.[-1,2]D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合U=R,集合A={x|2x>1},集合B={x|logx2>0},則A∩(∁UB)等于( 。
A.{x|x>1}B.{x|0<x<1}C.{x|0<x≤1}D.{x|x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若函數(shù)f(x)=ax3-bx+2,當(dāng)x=1時(shí),函數(shù)f(x)取極值0.
(1)求函數(shù)f(x)的解析式;
(2)若關(guān)于x的方程f(x)=k有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案