5.函數(shù)y=sin2x-1+cosx的值域為( 。
A.[0,2]B.[-2,$\frac{1}{4}$]C.[-1,1]D.[-2,0]

分析 化簡函數(shù)y,利用余弦函數(shù)cosx的有界性求出函數(shù)y的最大、最小值,即可得出函數(shù)y的值域.

解答 解:函數(shù)y=sin2x-1+cosx
=-cos2x+cosx
=-${(cosx-\frac{1}{2})}^{2}$+$\frac{1}{4}$,
當(dāng)cosx=$\frac{1}{2}$時,函數(shù)y取得最大值$\frac{1}{4}$,
當(dāng)cosx=-1時,函數(shù)y取得最小值-2,
所以函數(shù)y的值域是[-2,$\frac{1}{4}$].
故選:B.

點評 本題考查了利用三角函數(shù)的有界性求函數(shù)最值的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某市A、B兩所中學(xué)的學(xué)生組隊參加辯論賽,A中學(xué)推薦了2名男生、1名女生,B中學(xué)推薦了3名男生、2名女生,兩校所推薦的學(xué)生一起參加集訓(xùn).
(Ⅰ)集訓(xùn)后所有學(xué)生站成一排合影留念,其中女生不站在兩端,有多少種不同的站法;
(Ⅱ)現(xiàn)從這8名學(xué)生中隨機選擇4人去參加比賽,求:
①選定的4人中至少有1名女生的概率;
②選定的4人中恰有2名男生且這2名男生來自同一所中學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.把二進(jìn)制數(shù)101(2)化為十進(jìn)制數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.集合A={x|1≤x≤5},B={x|2≤x≤6},
(1)若x∈A,y∈B且均為整數(shù),求x>y的概率.
(2)若x∈A,y∈B且均為實數(shù),求x>y的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某中學(xué)有840名學(xué)生,現(xiàn)采用系統(tǒng)抽樣方法,抽取42人做問卷調(diào)查,將840人按1,2,…,840隨機編號,則抽取的42人中,編號落入?yún)^(qū)間[241,480]的人數(shù)為( 。
A.11B.12C.13D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=sin(ωx+φ)+1(0≤φ≤$\frac{π}{2}$)的圖象相鄰兩對稱軸之間的距離為π,且在x=$\frac{π}{6}$時取得最大值2.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)f(α)=$\frac{9}{5}$,且$\frac{π}{6}$<α<$\frac{2π}{3}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{({\frac{1}{2}})^{x-1}},x≤0\\{log_2}(4-x),0<x<4\end{array}$,若f(x)=4,則實數(shù)x=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列四個數(shù)中,最大的是( 。
A.11011(2)B.103(4)C.44(5)D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),作直線l交橢圓于P,Q兩點,M為線段PQ的中點,O為坐標(biāo)原點,設(shè)直線l的斜率為k1,直線OM的斜率為k2,k1k2=-$\frac{2}{3}$.則橢圓的離心率為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

同步練習(xí)冊答案