設(shè)是橢圓的左焦點,直線方程為,直線軸交于點,、分別為橢圓的左右頂點,已知,且
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點且斜率為的直線交橢圓于、兩點,求三角形面積.

(Ⅰ);(Ⅱ)三角形面積為

解析試題分析:(Ⅰ)∵,∴,又∵
,∴,,
∴橢圓的標準方程為                 6分
(Ⅱ)由題知:,,,,,
  消得:,             9分

到直線的距離:,                          12分
,即三角形面積為.        14分
考點:本題主要考查橢圓的標準方程,直線與橢圓的位置關(guān)系,距離,三角形面積。
點評:中檔題,求橢圓的標準方程,主要運用了橢圓的幾何性質(zhì),注意明確焦點軸和a,b,c的關(guān)系。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題(2)在應(yīng)用韋達定理的基礎(chǔ)上,應(yīng)用弦長公式,易于進一步計算三角形面積。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的中心在原點,焦點在x軸上,離心率為,短軸長為4.

(I)求橢圓C的標準方程;
(II)直線x=2與橢圓C交于P、Q兩點,A、B是橢圓O上位于直線PQ兩側(cè)的動點,且直線AB的斜率為.
①求四邊形APBQ面積的最大值;
②設(shè)直線PA的斜率為,直線PB的斜率為,判斷+的值是否為常數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求傾斜角是直線y=-x+1的傾斜角的,且分別滿足下列條件的直線方程:(1)經(jīng)過點(,-1);(2)在y軸上的截距是-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓C的方程;
(2)設(shè),、是橢圓上關(guān)于軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,求直線的斜率的取值范圍;
(3)在(2)的條件下,證明直線軸相交于定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,設(shè)點),直線:,點在直線上移動,是線段軸的交點, 過、分別作直線,使, .

(1)求動點的軌跡的方程;
(2)在直線上任取一點做曲線的兩條切線,設(shè)切點為,求證:直線恒過一定點;
(3)對(2)求證:當直線的斜率存在時,直線的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上.若橢圓上的點到焦點、的距離之和等于4.
(1)寫出橢圓的方程和焦點坐標.
(2)過點的直線與橢圓交于兩點,當的面積取得最大值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)是橢圓上的兩點,已知向量,若且橢圓的離心率,短軸長為2,O為坐標原點.
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

曲線都是以原點O為對稱中心、坐標軸為對稱軸、離心率相等的橢圓.點M的坐標是(0,1),線段MN是曲線的短軸,并且是曲線的長軸 . 直線與曲線交于A,D兩點(A在D的左側(cè)),與曲線交于B,C兩點(B在C的左側(cè)).
(1)當=時,求橢圓的方程;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:(a>b>0),則稱以原點為圓心,r=的圓為橢圓C的“知己圓”。
(Ⅰ)若橢圓過點(0,1),離心率e=;求橢圓C方程及其“知己圓”的方程;
(Ⅱ)在(Ⅰ)的前提下,若過點(0,m)且斜率為1的直線截其“知己圓”的弦長為2,求m的值;
(Ⅲ)討論橢圓C及其“知己圓”的位置關(guān)系.

查看答案和解析>>

同步練習冊答案