設(shè)是橢圓上的兩點(diǎn),已知向量,若且橢圓的離心率,短軸長(zhǎng)為2,O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)試問(wèn)△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.
(1);(2)△AOB的面積為定值1.
解析試題分析:(1)由題可得,則橢圓方程為 3分
(2)當(dāng)軸時(shí):,則
由對(duì)稱(chēng)性只取.
△AOB的面積為 6分
當(dāng)AB與x軸不垂直時(shí),設(shè)AB:y =kx + m.
則
8分
O到直線(xiàn)AB的距離:,S△AOB 10分
又
13分
S△AOB
△AOB的面積為定值1. 14分
考點(diǎn):本題考查了橢圓的方程及直線(xiàn)與橢圓的位置關(guān)系
點(diǎn)評(píng):橢圓的概念和性質(zhì),仍將是今后命題的熱點(diǎn),定值、最值、范圍問(wèn)題將有所加強(qiáng);利用直線(xiàn)、弦長(zhǎng)、圓錐曲線(xiàn)三者的關(guān)系組成的各類(lèi)試題是解析幾何中長(zhǎng)盛不衰的主題,其中求解與相交弦有關(guān)的綜合題仍是今后命題的重點(diǎn);與其它知識(shí)的交匯(如向量、不等式)命題將是今后命題的一個(gè)新的重點(diǎn)、熱點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn):上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線(xiàn)的方程;
(Ⅱ)設(shè)直線(xiàn)與拋物線(xiàn)交于不同兩點(diǎn),若滿(mǎn)足,證明直線(xiàn)恒過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).
(Ⅲ)試把問(wèn)題(Ⅱ)的結(jié)論推廣到任意拋物線(xiàn):中,請(qǐng)寫(xiě)出結(jié)論,不用證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,直線(xiàn),為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)作的垂線(xiàn),垂足為點(diǎn),且.
(1)求動(dòng)點(diǎn)的軌跡曲線(xiàn)的方程;
(2)設(shè)動(dòng)直線(xiàn)與曲線(xiàn)相切于點(diǎn),且與直線(xiàn)相交于點(diǎn),試探究:在坐標(biāo)平面內(nèi)是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過(guò)此定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)是橢圓的左焦點(diǎn),直線(xiàn)方程為,直線(xiàn)與軸交于點(diǎn),、分別為橢圓的左右頂點(diǎn),已知,且.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)且斜率為的直線(xiàn)交橢圓于、兩點(diǎn),求三角形面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N (點(diǎn)M在點(diǎn)N的右側(cè)),且。橢圓D:的焦距等于,且過(guò)點(diǎn)
( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過(guò)點(diǎn)M的動(dòng)直線(xiàn)與橢圓D交于A(yíng)、B兩點(diǎn),若點(diǎn)N在以弦AB為直徑的圓的外部,求直線(xiàn)斜率的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓的左焦點(diǎn)為F,過(guò)點(diǎn)F的直線(xiàn)交橢圓于A(yíng)、B兩點(diǎn),線(xiàn)段AB的中點(diǎn)為G,AB的中垂線(xiàn)與x軸和y軸分別交于D、E兩點(diǎn).
(Ⅰ)若點(diǎn)G的橫坐標(biāo)為,求直線(xiàn)AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點(diǎn))的面積為S2.
試問(wèn):是否存在直線(xiàn)AB,使得S1=S2?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:的離心率等于,點(diǎn)在橢圓上.
(I)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左右頂點(diǎn)分別為,,過(guò)點(diǎn)的動(dòng)直線(xiàn)與橢圓相交于,兩點(diǎn),是否存在定直線(xiàn):,使得與的交點(diǎn)總在直線(xiàn)上?若存在,求出一個(gè)滿(mǎn)足條件的值;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若雙曲線(xiàn)的離心率等于,直線(xiàn)與雙曲線(xiàn)的右支交于兩點(diǎn).
(1)求的取值范圍;
(2)若,點(diǎn)是雙曲線(xiàn)上一點(diǎn),且,求
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com