【題目】給出下列四個結(jié)論:
(1)如果的展開式中各項系數(shù)之和為128,則展開式中的系數(shù)是-21;
(2)用相關(guān)指數(shù)來刻畫回歸效果, 的值越大,說明模型的擬合效果越差;
(3)若是上的奇函數(shù),且滿足,則的圖象關(guān)于對稱;
(4)一個籃球運(yùn)動員投籃一次得3分的概率為,得2分的概率為,不得分的概率為,且,已知他投籃一次得分的數(shù)學(xué)期望為2,則的最小值為;
其中正確結(jié)論的序號為__________.
【答案】(3)(4)
【解析】令得展開式的各項系數(shù)和為 解得 , 展開式的通項為 ,令 ,解得 ,所以展開式中 的系數(shù)為 ,故①錯誤;②在線性回歸模型中,相關(guān)指數(shù) 時, 越大、越接近于 ,表示解釋變量和預(yù)報變量的線性相關(guān)關(guān)系越強(qiáng);說明模型的擬合效果越好,故②錯誤;③若 是定義在 上的奇函數(shù),且滿足 ,則 ,即 ,則函數(shù)的圖象關(guān)于對稱,故③正確;④因為該籃球運(yùn)動員投籃一次得3分的概率為,得2分的概率為,不得分的概率為,且,已知他投籃一次得分的數(shù)學(xué)期望為2,所以 , ,故④正確,故答案為③④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+a2.
(I)若f(x)在x=1處有極值10,求a,b的值;
(II)若當(dāng)a=-1時,f(x)<0在x∈[1,2]恒成立,求b的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有2個紅球,4個白球,除顏色外,它們的形狀、大小、質(zhì)量等完全相同
(1)采用不放回抽樣,先后取兩次,每次隨機(jī)取一個球,求恰好取到1個紅球,七個白球的概率;
(2)采用放回抽樣,每次隨機(jī)抽取一球,連續(xù)取3次,求至少有1次取到紅球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),將的圖象向左平移個單位長度后得到的圖象,且在區(qū)間內(nèi)的最大值為.
(1)求實數(shù)的值;
(2)在中,內(nèi)角, , 的對邊分別是, , ,若,且,求的周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)圖象上點處的切線方程與直線平行(其中),.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在()上的最小值;
(Ⅲ)對一切, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費(fèi)支出與銷售額(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):
(1)求回歸直線方程;
(2)試預(yù)測廣告費(fèi)支出為萬元時,銷售額多大?
(3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測值與實際值之差的絕對值不超過的概率.(參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:實數(shù)x滿足,其中,命題實數(shù)滿足
|x-3|≤1 .
(1)若且為真,求實數(shù)的取值范圍;
(2)若是的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①分類變量與的隨機(jī)變量越大,說明“與有關(guān)系”的可信度越大.
②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為中, ,
則.正確的個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com