Processing math: 100%
精英家教網 > 高中數學 > 題目詳情
16.已知雙曲線C1x2a2-y22=1(a>0,b>0)的右焦點為拋物線C2:y2=2px的焦點F,且點F到雙曲線的一條漸近線的距離為3,若雙曲線C1與拋物線C2在第一象限內的交點為P(x0,26),則該雙曲線的離心率e為(  )
A.2B.2C.3D.1+2

分析 利用已知條件求出b,通過交點坐標,代入拋物線以及雙曲線方程,轉化求解雙曲線的離心率即可.

解答 解:雙曲線C1x2a2-y22=1(a>0,b>0)的右焦點為拋物線C2:y2=2px的焦點F,可得p2=c,
點F到雙曲線的一條漸近線bx+ay=0的距離為3,可得bca2+2=3,b=3
雙曲線C1與拋物線C2在第一象限內的交點為P(x0,26),
可得:24=2px0,x02a2243=1,
可得:a2c2=4,b2=3,
可得a=1,c=2.
雙曲線的離心率為:2.
故選:B.

點評 本題考查雙曲線的簡單性質的應用,拋物線的簡單性質的應用,考查轉化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

6.如圖,已知E,F分別是正方形ABCD邊BC、CD的中點,EF與AC交于點O,PA,NC都垂直于平面ABCD,且PA=AB=4,NC=2,M是線段PA上的一動點.
(1)求證:平面PAC⊥平面NEF;
(2)若PC∥平面MEF,試求PM:MA的值;
(3)在第(2)問的條件下,求平面MEF與平面NEF的夾角的大�。�

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.若sinαsinβ=1,則cos(α+β)=( �。�
A.1B.-1C.0D.0或-1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.已知a>0,b>0,1a+4=2,則y=4a+b的最小值是( �。�
A.8B.6C.2D.9

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知集合A={x|y=log2x,y∈Z},B={1,2,3,4,5,6,7,8,9},則A∩B=( �。�
A.{1,2,3,4}B.{2,4,6,8}C.{1,2,4,8}D.{2,4,8}

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.101(9)化為十進制數為( �。�
A.9B.11C.82D.101

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.在△ABC中,角A、B、C的對邊分別為a,b,c,且b(2sinB+sinA)+(2a+b)sinA=2csinC,則C=( �。�
A.π6B.π3C.2π3D.5π6

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知函數f(x)=ex+mx-3,曲線y=f(x)在點(0,f(0))處的切線方程為y=-2.
(Ⅰ)求函數f(x)的單調區(qū)間;
(Ⅱ)當x>0時,若不等式(t-x)ex<t+2恒成立,求實數t的最大整數值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.如圖是某賽季甲、乙兩名籃球運動員每場比賽得分的莖葉圖,則甲、乙兩人這幾場比賽得分的中位數之和是( �。�
A.65B.64C.63D.62

查看答案和解析>>

同步練習冊答案