11.C${\;}_{2n}^{2}$+C${\;}_{2n}^{4}$+…+C${\;}_{2n}^{2k}$+…+C${\;}_{2n}^{2n}$ 的值為( 。
A.22n-1-1B.22n-1C.2n-1D.2n

分析 由條件利用二項(xiàng)式系數(shù)的性質(zhì),求得要求式子的值.

解答 解:C${\;}_{2n}^{2}$+C${\;}_{2n}^{4}$+…+C${\;}_{2n}^{2k}$+…+C${\;}_{2n}^{2n}$=( ${C}_{2n}^{0}$+C${\;}_{2n}^{2}$+C${\;}_{2n}^{4}$+…+C${\;}_{2n}^{2k}$+…+C${\;}_{2n}^{2n}$  )-1=$\frac{{2}^{2n}}{2}$-1=22n-1-1,
故選:A.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知復(fù)數(shù)z=(1+i)(2-i),則|z|=(  )
A.$\sqrt{2}$B.$\sqrt{10}$C.3$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.${(\frac{2}{{\sqrt{x}}}-x)^9}$展開式中除常數(shù)項(xiàng)外的其余項(xiàng)的系數(shù)之和為( 。
A.5377B.-5377C.5375D.-5375

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在一個(gè)不透明的袋子里,有三個(gè)大小相等小球(兩黃一紅),現(xiàn)在分別由3個(gè)同學(xué)無放回地抽取,如果已知第一名同學(xué)沒有抽到紅球,那么最后一名同學(xué)抽到紅球的概率為(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合M=$\left\{{x\left|{\frac{x^2}{16}+\frac{y^2}{9}=1}\right.}\right\},N=\left\{{y\left|{\frac{x}{4}+\frac{y}{3}=1}\right.}\right\}$,則M∩N=(  )
A.B.{(4,0),(0,3)}C.{4,3}D.[-4,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.△ABC的內(nèi)角A,B,C,所對(duì)的邊分別為a,b,c,向量$\overrightarrow{m}$=(a,$\sqrt{3}$b),$\overrightarrow n=(sinB,-cosA)$,且$\overrightarrow m•\overrightarrow n=0$.
(1)求A;
(2)若$a=\frac{7}{2}$,△ABC的面積為$\frac{3}{2}\sqrt{3}$,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)x,y,z∈R,若x-2y+z=4.
(1)求x2+y2+z2的最小值;
(2)求x2+(y-1)2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=-x3+12x
(1)判斷函數(shù)f(x)的單調(diào)性
(2)求函數(shù)f(x)當(dāng)x∈[-3,1]時(shí)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某班50位學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中x的值;
(2)從成績(jī)不低于80分的學(xué)生中隨機(jī)選取2人,該2人中成績(jī)?cè)?0分以上(含90分)的人數(shù)記為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案