2.${(\frac{2}{{\sqrt{x}}}-x)^9}$展開式中除常數(shù)項外的其余項的系數(shù)之和為(  )
A.5377B.-5377C.5375D.-5375

分析 利用二項展開式中的通項公式,求出展開式的常數(shù)項,再令x=1可得展開式中各項系數(shù)和,由此求出展開式中除常數(shù)項外的其余項的系數(shù)和.

解答 解:($\frac{2}{\sqrt{x}}$-x)9展開式中的通項公式為:
Tr+1=C9r•($\frac{2}{\sqrt{x}}$)9-r•(-1)r•xr=(-1)r•C9r•29-r•x${\;}^{\frac{9-3r}{2}}$,
令$\frac{9-3r}{2}$=0,求得r=3,
所以展開式中常數(shù)項為(-1)3•C93•26=-5376,
令x=1可得展開式中各項系數(shù)之和為(2-1)9=1,
所以展開式中除常數(shù)項外的其余項的系數(shù)之和為1+5376=5377.
故選:A.

點(diǎn)評 本題主要考查二項式定理的應(yīng)用問題,解題時應(yīng)利用展開式的通項公式求出常數(shù)項,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1}{2}$x2-(a+2)x+2alnx(a>0),
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線為y=2x+b,求a+2b的值;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)設(shè)函數(shù)g(x)=-(a+2)x,若至少存在一個x0∈[e,4],使得f(x0)>g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分別是AC,AB上的點(diǎn),$CD=BE=\sqrt{2}$,O為BC的中點(diǎn).將△ADE沿DE折起,得到如圖2所示的四棱錐A′-BCDE,其中$A'O=\sqrt{3}$.

(Ⅰ)證明:A′O⊥平面BCDE;
(Ⅱ)求O到平面A′DE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=cos(2x+\frac{π}{3})+{sin^2}x$.
(1)求函數(shù)f(x)的最小正周期和單調(diào)區(qū)間;
(2)設(shè)銳角△ABC的三個內(nèi)角A、B、C的對應(yīng)邊分別是a,b,c,若$cosB=\frac{1}{3}$,$c=\sqrt{6}$,f($\frac{C}{2}$)=-$\frac{1}{4}$,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線在y軸上的截距是-3,且傾斜角為135°,則直線的方程為x+y+3=0.(寫成一般式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.關(guān)于函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$),則下列命題:
①y=f(x)的最大值為$\sqrt{2}$;
②y=f(x)最小正周期是π;
③y=f(x)在區(qū)間$[\frac{π}{24},\frac{13π}{24}]$上是減函數(shù);
④將函數(shù)y=$\sqrt{2}$cos2x的圖象向右平移$\frac{π}{24}$個單位后,將與已知函數(shù)的圖象重合.
其中正確命題的序號是①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓錐曲線C的極坐標(biāo)方程為${ρ^2}=\frac{12}{{3+{{sin}^2}θ}}$,定點(diǎn)$A(0,-\sqrt{3})$,F(xiàn)1,F(xiàn)2是圓錐曲線C的左、右焦點(diǎn).直線經(jīng)過點(diǎn)F1且平行于直線AF2
(Ⅰ)求圓錐曲線C和直線的直角坐標(biāo)方程;
(Ⅱ)若直線與圓錐曲線C交于M,N兩點(diǎn),求|F1M|•|F1N|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.C${\;}_{2n}^{2}$+C${\;}_{2n}^{4}$+…+C${\;}_{2n}^{2k}$+…+C${\;}_{2n}^{2n}$ 的值為(  )
A.22n-1-1B.22n-1C.2n-1D.2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.7個人按如下各種方式排隊照相,有多少種排法?(必須計算出結(jié)果)
(Ⅰ)甲必須站在正中間;
(Ⅱ)甲乙必須站在兩端;
(Ⅲ)甲乙不能站在兩端;
(Ⅳ)甲乙兩人要站在一起.

查看答案和解析>>

同步練習(xí)冊答案