【題目】某老師是省級課題組的成員,主要研究課堂教學目標達成度,為方便研究,從實驗班中隨機抽取30次的隨堂測試成績進行數(shù)據(jù)分析已知學生甲的30次隨堂測試成績如下滿分為100分:
把學生甲的成績按,,,,,分成6組,列出頻率分布表,并畫出頻率分布直方圖;
規(guī)定隨堂測試成績80分以上含80分為優(yōu)秀,為幫助學生甲提高成績,選取學生乙,對甲與乙的隨堂測試成績進行對比分析,甲與乙測試成績是否為優(yōu)秀相互獨立已知甲成績優(yōu)秀的概率為以頻率估計概率,乙成績優(yōu)秀的概率為,若,則此二人適合為學習上互幫互助的“對子”在一次隨堂測試中,記為兩人中獲得優(yōu)秀的人數(shù),已知,問二人是否適合結為“對子”?
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求曲線的直角坐標方程,并說明它為何種曲線;
(Ⅱ)設點的坐標為,直線交曲線于,兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖甲所示, 是梯形的高, , , ,現(xiàn)將梯形沿折起如圖乙所示的四棱錐,使得,點是線段上一動點.
(1)證明: 和不可能垂直;
(2)當時,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設橢圓: ,長軸的右端點與拋物線: 的焦點重合,且橢圓的離心率是.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過作直線交拋物線于, 兩點,過且與直線垂直的直線交橢圓于另一點,求面積的最小值,以及取到最小值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知過點的橢圓的離心率為,左頂點和上頂點分別為A,B.
(1)求橢圓的標準方程;
(2)若P為線段OD延長線上一點,直線PA交橢圓于另一點E,直線PB交橢圓于另一點Q.
①求直線PA與PB的斜率之積;
②判斷直線AB與EQ是否平行?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖像向左平移個單位后得到函數(shù)的圖像,且函數(shù)滿足,則下列命題中正確的是()
A. 函數(shù)圖像的兩條相鄰對稱軸之間的距離為
B. 函數(shù)圖像關于點對稱
C. 函數(shù)圖像關于直線對稱
D. 函數(shù)在區(qū)間內為單調遞減函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們知道,地球上的水資源有限,愛護地球、節(jié)約用水是我們每個人的義務和責任.某市政府為了對自來水的使用進行科學管理,節(jié)約水資源,計劃確定一個家庭年用水量的標準,為此,對全市家庭日常用水的情況進行抽樣調查,并獲得了個家庭某年的用水量(單位:立方米),統(tǒng)計結果如下表所示.
(Ⅰ)分別求出的值;
(Ⅱ)若以各組區(qū)間中點值代表該組的取值,試估計全市家庭平均用水量;
(Ⅲ)從樣本中年用水量在(單位:立方米)的個家庭中任選個,作進一步跟蹤研究,求年用水量最多的家庭被選中的概率(個家庭的年用水量都不相等).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】動圓M與圓F1:x2+y2+6x+5=0外切,同時與圓F2:x2+y2﹣6x﹣91=0內切.
(1)求動圓圓心M的軌跡方程E,并說明它是什么曲線;
(2)若直線yx+m與(1)中的軌跡E有兩個不同的交點,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓1(a>b>0)的右頂點為(2,0),離心率為,P是直線x=4上任一點,過點M(1,0)且與PM垂直的直線交橢圓于A,B兩點.
(1)求橢圓的方程;
(2)若P點的坐標為(4,3),求弦AB的長度;
(3)設直線PA,PM,PB的斜率分別為k1,k2,k3,問:是否存在常數(shù)λ,使得k1+k3=λk2?若存在,求出λ的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com