【題目】如圖甲所示, 是梯形的高, , , ,現(xiàn)將梯形沿折起如圖乙所示的四棱錐,使得,點是線段上一動點.
(1)證明: 和不可能垂直;
(2)當時,求與平面所成角的正弦值.
【答案】(1)詳見解析; (2).
【解析】試題分析:由于折疊后,經(jīng)過計算知,這樣兩兩垂直,因此以它們?yōu)樽鴺溯S建立空間直角坐標系,寫出各點坐標.
(1)否定性命題,可假設(shè),同時設(shè)(),利用向量垂直計算出,如果滿足說明存在,如果不滿足說明不存在;
(2)由得點坐標,從而可求出平面的法向量,則向量與夾角的余弦的絕對值等于直線與平面所成角的正弦值.
解析:如圖甲所示,因為是梯形的高,,所以,因為,,可得,,如圖乙所示,, ,,所以有,所以,而,,所以平面,又,所以、、兩兩垂直.故以為原點,建立空間直角坐標系(如圖),則,,,
(1)設(shè)其中,所以 ,,假設(shè)和垂直,則,有,解得,這與矛盾,假設(shè)不成立,所以和不可能垂直.
(2)因為,所以 ,設(shè)平面的一個法向量是,因為,,所以,,即,取,而,所以,所以與平面所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(x﹣ )cos(x﹣ )(x∈R),則下面結(jié)論錯誤的是( )
A.函數(shù)f(x)的圖象關(guān)于點(﹣ ,0)對稱
B.函數(shù)f(x)的圖象關(guān)于直線x=﹣ 對稱
C.函數(shù)f(x)在區(qū)間[0, ]上是增函數(shù)
D.函數(shù)f(x)的圖象是由函數(shù)y= sin2x的圖象向右平移 個單位而得到
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費支出 (百萬元)與銷售額 (百萬元)之間有如下對應(yīng)數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 50 | 60 | 70 |
如果與之間具有線性相關(guān)關(guān)系.
(1)作出這些數(shù)據(jù)的散點圖;
(2)求這些數(shù)據(jù)的線性回歸方程;
(3)預(yù)測當廣告費支出為9百萬元時的銷售額。 ( 參考數(shù)據(jù): )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m,n是兩條不同的直線,α、β是兩個不同的平面,則下列命題不正確的是________.
(1).若m⊥n,m⊥α,nα,則n∥α
(2).若m⊥β,α⊥β,則m∥α或mα
(3).若m⊥n,m⊥α,n⊥β,則α⊥β
(4).若∥α,α⊥β,則⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體中, 兩兩垂直,平面平面,平面平面, .
(1)證明四邊形是正方形;
(2)判斷點是否四點共面,并說明為什么?
(3)連結(jié),求證: 平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)某種設(shè)備使用的年限x(年)與所支出的維修費用y(萬元)有以下統(tǒng)計資料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
維修費用y | 2 | 4 | 5 | 6 | 7 |
若由資料知y對x呈線性相關(guān)關(guān)系。試求:
(1)求; (2)線性回歸方程;
(3)估計使用10年時,維修費用是多少?
附:利用“最小二乘法”計算a,b的值時,可根據(jù)以下公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點M是棱長為2的正方體的棱AD的中點,P是平面內(nèi)一點,若面分別與面ABCD和面所成的銳二面角相等,則長度的最小值是( )
A. B. C. D. 1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com