【題目】正四棱錐P﹣ABCD的底面積為3,體積為 ,E為側(cè)棱PC的中點(diǎn),則PA與BE所成的角為( )
A.
B.
C.
D.
【答案】B
【解析】解:過(guò)頂點(diǎn)作垂線,交底面正方形對(duì)角線交點(diǎn)O,連接OE,
∵正四棱錐P﹣ABCD的底面積為3,體積為 ,
∴PO= ,AB= ,AC= ,PA= ,OB=
因?yàn)镺E與PA在同一平面,是三角形PAC的中位線,
則∠OEB即為PA與BE所成的角
所以O(shè)E= ,
在Rt△OEB中,tan∠OEB= = ,
所以∠OEB=
故選B
【考點(diǎn)精析】關(guān)于本題考查的異面直線及其所成的角,需要了解異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖甲所示, 是梯形的高, , , ,現(xiàn)將梯形沿折起如圖乙所示的四棱錐,使得,點(diǎn)是線段上一動(dòng)點(diǎn).
(1)證明: 和不可能垂直;
(2)當(dāng)時(shí),求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,l1,l2是通過(guò)某城市開(kāi)發(fā)區(qū)中心O的兩條南北和東西走向的街道,連結(jié)M、N兩地之間的鐵路線是圓心在l2上的一段圓。酎c(diǎn)M在點(diǎn)O正北方向,且|MO|=3 km,點(diǎn)N到l1,l2的距離分別為4 km和5 km.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求鐵路線所在圓弧的方程;
(2)若該城市的某中學(xué)擬在點(diǎn)O正東方向選址建分校,考慮環(huán)境問(wèn)題,要求校址到點(diǎn)O的距離大于4 km,并且鐵路線上任意一點(diǎn)到校址的距離不能少于km,求該校址距點(diǎn)O的最近距離.(注:校址視為一個(gè)點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線l1:y=x+a和直線l2:y=x+b將圓(x﹣1)2+(y﹣2)2=8分成長(zhǎng)度相等的四段弧,則a2+b2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:x∈A,且A={x|a﹣1<x<a+1},命題q:x∈B,且B={x|x2﹣4x+3≥0}
(Ⅰ)若A∩B=,A∪B=R,求實(shí)數(shù)a的值;
(Ⅱ)若p是q的充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)M=( ﹣1)( ﹣1)( ﹣1)滿足a+b+c=1(其中a>0,b>0,c>0),則M的取值范圍是( )
A.[0, )
B.[ ,1)
C.[1,8)
D.[8,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等比數(shù)列{an}中,a2=6,a2+a3=24,在等差數(shù)列{bn}中,b1=a1 , b3=﹣10.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)列,定義, .
(1) 若,是否存在,使得?請(qǐng)說(shuō)明理由;
(2) 若, ,求數(shù)列的通項(xiàng)公式;
(3) 令,求證:“為等差數(shù)列”的充要條件是“的前4項(xiàng)為等差數(shù)列,且為等差數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設(shè)點(diǎn),直線和曲線交于兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com