【題目】在直角坐標系中,圓的參數(shù)方程為為參數(shù)),直線經過點,且傾斜角為.
(1)寫出直線的參數(shù)方程和圓的標準方程;
(2)設直線與圓相交于兩點,求的值.
【答案】(1)(t為參數(shù)),;(2)12.
【解析】
(1)根據參數(shù)方程與普通方程的互化可得到圓的直角坐標方程,由直線的參數(shù)方程的寫法得到直線的參數(shù)方程;(2);聯(lián)立直線的參數(shù)方程和圓的普通方程,得到|PA|·|PB|=|t1t2|可得到結果.
(1)把圓C的參數(shù)方程 (θ為參數(shù))化為直角坐標方程為x2+y2=25.
由條件可得直線l的參數(shù)方程為即 (t為參數(shù)).
(2)把直線l的參數(shù)方程代入圓C的方程化簡可得t2+(3+2)t-12=0,
所以t1t2=-12,故|PA|·|PB|=|t1t2|=12.
科目:高中數(shù)學 來源: 題型:
【題目】某電視臺為宣傳本市,隨機對本市內歲的人群抽取了人,回答問題“本市內著名旅游景點有哪些” ,統(tǒng)計結果如圖表所示.
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的頻率 |
第1組 | [15,25) | a | 0.5 |
第2組 | [25,35) | 18 | x |
第3組 | [35,45) | b | 0.9 |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 | y |
(1)分別求出的值;
(2)根據頻率分布直方圖估計這組數(shù)據的中位數(shù)(保留小數(shù)點后兩位)和平均數(shù);
(3)若第1組回答正確的人員中,有2名女性,其余為男性,現(xiàn)從中隨機抽取2人,求至少抽中1名女性的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型超市在2018年元旦舉辦了一次抽獎活動,抽獎箱里放有2個紅球,1個黃球和1個藍球(這些小球除顏色外大小形狀完全相同),從中隨機一次性取2個小球,每位顧客每次抽完獎后將球放回抽獎箱.活動另附說明如下:
①凡購物滿100(含100)元者,憑購物打印憑條可獲得一次抽獎機會;
②凡購物滿188(含188)元者,憑購物打印憑條可獲得兩次抽獎機會;
③若取得的2個小球都是紅球,則該顧客中得一等獎,獎金是一個10元的紅包;
④若取得的2個小球都不是紅球,則該顧客中得二等獎,獎金是一個5元的紅包;
⑤若取得的2個小球只有1個紅球,則該顧客中得三等獎,獎金是一個2元的紅包.
抽獎活動的組織者記錄了該超市前20位顧客的購物消費數(shù)據(單位:元),繪制得到如圖所示的莖葉圖.
(1)求這20位顧客中獲得抽獎機會的人數(shù)與抽獎總次數(shù)(假定每位獲得抽獎機會的顧客都會去抽獎);
(2)求這20位顧客中獎得抽獎機會的顧客的購物消費數(shù)據的中位數(shù)與平均數(shù)(結果精確到整數(shù)部分);
(3)分別求在一次抽獎中獲得紅包獎金10元,5元,2元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內部)以AB邊所在直線為旋轉軸旋轉120°得到的,G是的中點.
(1)設P是上的一點,且AP⊥BE,求∠CBP的大。
(2)當AB=3,AD=2時,求二面角E-AG-C的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設分別是橢圓的左、右焦點.
(1)若是該橢圓上的一個動點,求的最大值和最小值;
(2)設過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標原點),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種汽車,購車費用是10萬元,第一年維修費用是0.2萬元,以后逐年遞增0.2萬元,且每年的保險費、養(yǎng)路費、汽油費等約為0.9萬元.
(1)設這種汽車使用年()的維修費用的和為萬元,求的表達式;
(2)這種汽車使用多少年時,它的年平均費用最?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中,m,n表示兩條不同的直線,、、表示三個不同的平面.正確的命題是( )
若,,則;若,,則;
若,,則;若,,,則.
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)學家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線已知的頂點,若其歐拉線的方程為,則頂點的坐標為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年為我國改革開放40周年,某事業(yè)單位共有職工600人,其年齡與人數(shù)分布表如下:
年齡段 | ||||
人數(shù)(單位:人) | 180 | 180 | 160 | 80 |
約定:此單位45歲~59歲為中年人,其余為青年人,現(xiàn)按照分層抽樣抽取30人作為全市慶祝晚會的觀眾.
(1)抽出的青年觀眾與中年觀眾分別為多少人?
(2)若所抽取出的青年觀眾與中年觀眾中分別有12人和5人不熱衷關心民生大事,其余人熱衷關心民生大事.完成下列列聯(lián)表,并回答能否有的把握認為年齡層與熱衷關心民生大事有關?
熱衷關心民生大事 | 不熱衷關心民生大事 | 總計 | |
青年 | 12 | ||
中年 | 5 | ||
總計 | 30 |
(3)若從熱衷關心民生大事的青年觀眾(其中1人擅長歌舞,3人擅長樂器)中,隨機抽取2人上臺表演節(jié)目,則抽出的2人能勝任才藝表演的概率是多少?
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com