【題目】設(shè)分別是橢圓的左、右焦點.

(1)若是該橢圓上的一個動點,求的最大值和最小值;

(2)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標(biāo)原點),求直線的斜率的取值范圍.

【答案】(1) ;(2).

【解析】

(1)設(shè)出點P的坐標(biāo),向量坐標(biāo)化得到的表達式,進而得到最值;(2為銳角即,設(shè)出點AB的坐標(biāo),向量坐標(biāo)化得到點積的表達式為:x1x2y1y2,聯(lián)立直線和橢圓方程,由韋達定理得到結(jié)果.

(1)由已知得,F1(-,0),F2(,0),設(shè)點P(xy),

y2=1,且-2≤x≤2.

所以·=(-x,-y)·(x,-y)=x2-3+y2x2-3+1-x2-2,

當(dāng)x=0,即P(0,±1)時,(·)min=-2;

當(dāng)x=±2,即P(±2,0)時,(·)max=1.

(2)由題意可知,過點M(0,2)的直線l的斜率存在.

設(shè)l的方程為ykx+2,

消去y,化簡整理得

(1+4k2)x2+16kx+12=0,Δ=(16k)2-48(1+4k2)>0,解得k2>

設(shè)A(x1y1),B(x2y2),則x1x2=-x1x2,

又∠AOB為銳角,所以·>0,即x1x2y1y2>0,

x1x2+(kx1+2)(kx2+2)=(1+k2)x1x2+2k(x1x2)+4

=(1+k2+2k·+4>0,解得k2<4,

所以k2<4,即k

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修44:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為

為參數(shù)).以坐標(biāo)原點為極點,以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)

方程是.

(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點.若點的極坐標(biāo)為,直線經(jīng)過點且與曲線相交于兩點,求兩點間的距離的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線 與拋物線 異于原點的交點為,且拋物線在點處的切線與軸交于點,拋物線在點處的切線與軸交于點,與軸交于點.

(1)若直線與拋物線交于點, ,且,求拋物線的方程;

(2)證明: 的面積與四邊形的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域為,若存在常數(shù),使對一切實數(shù)均成立,則稱為“倍約束函數(shù)”現(xiàn)給出下列函數(shù):;;是定義在實數(shù)集上的奇函數(shù),且對一切均有其中是“倍約束函數(shù)”的序號是  

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.

(I)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;

(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),直線經(jīng)過點,且傾斜角為

(1)寫出直線的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線與圓相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國電子商務(wù)蓬勃發(fā)展,有關(guān)部門推出了針對網(wǎng)購平臺的商品和服務(wù)的評價系統(tǒng),從該系統(tǒng)中隨機選出100次成功了的交易,并對這些交易的評價進行統(tǒng)計,網(wǎng)購者對商品的滿意率為0.6,對服務(wù)的滿意率為0.75,其中對商品和服務(wù)都滿意的交易為40次.

(1)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有的把握認為“網(wǎng)購者對服務(wù)滿意與對商品滿意之間有關(guān)”?

(2)若將頻率視為概率,某人在該網(wǎng)購平臺上進行的3次購物中,設(shè)對商品和服務(wù)都滿意的次數(shù)為,求的分布列和數(shù)學(xué)期望.

附: (其中為樣本容量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店統(tǒng)計了連續(xù)三天售出商品的種類情況:第一天售出19種商品,第二天售出13種商品,第三天售出18種商品;前兩天都售出的商品有3種,后兩天都售出的商品有4種,則該網(wǎng)店

第一天售出但第二天未售出的商品有______種;

這三天售出的商品最少有_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

同步練習(xí)冊答案