Processing math: 100%
8.已知點(diǎn)P和點(diǎn)Q的縱坐標(biāo)相同,P的橫坐標(biāo)是Q的橫坐標(biāo)的3倍,P和Q的軌跡分別為雙曲線C1和C2,若C1的漸近線方程為y=±3x,則C2的漸近線方程為y=±33x.

分析 設(shè)C1的方程為y2-3x2=λ,利用坐標(biāo)間的關(guān)系,求出Q的軌跡方程,即可求出C2的漸近線方程.

解答 解:∵若C1的漸近線方程為y=±3x,
∴設(shè)C1的方程為y2-3x2=λ,
設(shè)Q(x,y),則P(x′,y′),
{y=yx=3x,
則x=13x′,即Q(13x′,y′),
代入y2-3x2=λ,可得y2-3×19x2=λ,
即y2-13x2=λ,
由y2-13x2=λ=0得y2=13x2,即y=±33x
∴C2的漸近線方程為y=±33x.
故答案為:y=±33x

點(diǎn)評(píng) 本題主要考查雙曲線漸近線方程的計(jì)算,根據(jù)坐標(biāo)關(guān)系求出對(duì)應(yīng)的軌跡方程是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.雙曲線x2a2y2b2=1a0b0為等軸曲線,過(guò)右焦點(diǎn)F作x軸的垂線交雙曲線與A,B兩點(diǎn),若|AB|=22,△OAB(O為坐標(biāo)原點(diǎn))的面積為(  )
A.22B.23C.42D.43

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知雙曲線x2-y23=1的左、右焦點(diǎn)分別為F1、F2,P為雙曲線右支上一點(diǎn),點(diǎn)Q的坐標(biāo)為(-2,3),則|PQ|+|PF1|的最小值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知雙曲線為x216y29=1,則雙曲線的右焦點(diǎn)到其漸近線的距離為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)fx={x+1x1xx1.若f(x)>f(x+1),則x的取值范圍是(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,PA⊥底面ABCD,M為AB的中點(diǎn).
(Ⅰ)證明:平面PMD⊥平面PAB
(Ⅱ)N為PC上一點(diǎn),且AC⊥BN,PA=AB=2,求三棱錐N-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在平面直角坐標(biāo)系xOy中,已知△ABC的頂點(diǎn)B、C恰好是雙曲線M:x29y216=1的左右焦點(diǎn),且頂點(diǎn)A在雙曲線M的右支上,則sinCsinBsinA=35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖(1),在等腰梯形ABCD中,AB∥CD,E,F(xiàn)分別為AB和CD的中點(diǎn),且AB=EF=2,CD=6,M為EC中點(diǎn),現(xiàn)將梯形ABCD沿EF所在直線折起,使平面EFCB⊥平面EFDA,如圖(2)所示,N是CD的中點(diǎn).
(Ⅰ)求證:MN∥平面ADFE;
(Ⅱ)求四棱錐M-EFDA的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.利用輾轉(zhuǎn)相除法求兩數(shù)4081與20723的最大公約數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案