Processing math: 100%
19.已知雙曲線x2-y23=1的左、右焦點(diǎn)分別為F1、F2,P為雙曲線右支上一點(diǎn),點(diǎn)Q的坐標(biāo)為(-2,3),則|PQ|+|PF1|的最小值為7.

分析 依題意,可求得F1(-4,0),F(xiàn)2(4,0),P在雙曲線的右支上,利用雙曲線的定義|PF1|-|PF2|=4,可求得|PF1|=|PF2|+4,從而可求得|PF1|+|PQ|的最小值.

解答 解:由雙曲線方程得a=1,c=2
∵P在雙曲線的右支上,
∴|PF1|-|PF2|=2,
∴|PF1|=|PF2|+2,
又雙曲線右焦點(diǎn)F2(2,0),
∴|PF1|+|PQ|=|PF2|+4+|PQ|≥|QF2|+2
=222+32+2═5+2=7,(當(dāng)且僅當(dāng)Q、P、F2三點(diǎn)共線時取“=”).
則|PQ|+|PF1|的最小值為7.
故答案為:7.

點(diǎn)評 本題考查雙曲線的簡單性質(zhì),利用雙曲線的定義將|PF1|轉(zhuǎn)化為|PF2|+2是關(guān)鍵,考查轉(zhuǎn)化思想與應(yīng)用不等式的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知四邊形ABCD為平行四邊形,BD⊥AD,BD=AD,AB=2,四邊形ABEF為正方形,且平面ABEF⊥平面ABCD.
(1)求證:BD⊥平面ADF;
(2)若M為CD中點(diǎn),證明:在線段EF上存在點(diǎn)N,使得MN∥平面ADF,并求出此時三棱錐N-ADF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知雙曲線E:x2a2y2b2=1(a>0,b>0)的離心率5,則該雙曲線的一條漸近線被圓C:x2+y2-2x-3=0截得的弦長為( �。�
A.455B.855C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.以正方形的一條邊的兩個端點(diǎn)為焦點(diǎn),且過另外兩個頂點(diǎn)的橢圓與雙曲線的離心率之積為( �。�
A.1B.22C.2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.拋物線y2=4x的焦點(diǎn)F的直線交該拋物線于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).若|AF|=3,且△AOB的面積為322,則點(diǎn)B的縱坐標(biāo)為(  )
A.±1B.±22C.±2D.±12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知雙曲線mx2-ny2=1(m>0、n>0)的離心率為2,則橢圓mx2+ny2=1的離心率為63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)不等式組{xy0x+y4x1表示的平面區(qū)域?yàn)镸,若直線l:y=k(x+2)上存在區(qū)域M內(nèi)的點(diǎn),則k的取值范圍是[131]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點(diǎn)P和點(diǎn)Q的縱坐標(biāo)相同,P的橫坐標(biāo)是Q的橫坐標(biāo)的3倍,P和Q的軌跡分別為雙曲線C1和C2,若C1的漸近線方程為y=±3x,則C2的漸近線方程為y=±33x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.棱長為1的正方體ABCD-A1B1C1D1中,沿平面A1ACC1將正方體分成兩部分,其中一部分如圖所示,過直線A1C的平面A1CM與線段BB1交于點(diǎn)M.
(Ⅰ)當(dāng)M與B1重合時,求證:MC⊥AC1;
(Ⅱ)當(dāng)平面A1CM⊥平面A1ACC1時,求平面A1CM分幾何體所得兩部分體積之比.

查看答案和解析>>

同步練習(xí)冊答案