【題目】已知橢圓的焦距為2,且過點

1)求橢圓的方程;

2)設(shè)的左焦點,點為直線上任意一點,過點的垂線交于兩點,

(。┳C明:平分線段(其中為坐標原點);

(ⅱ)當取最小值時,求點的坐標.

【答案】12)(。┮娊馕觯áⅲc的坐標為

【解析】

1)由題意得,再由的關(guān)系求出,即可得橢圓的標準方程;

2)(i)設(shè),的中點為,設(shè)直線的方程為,代入橢圓方程中,運用根與系數(shù)的關(guān)系和中點坐標公式,結(jié)合三點共線的方法:斜率相等,即可得證;

ii)利用兩點間的距離公式及弦長公式將表示出來,由換元法的對勾函數(shù)的單調(diào)性,可得取最小值時的條件獲得等量關(guān)系,從而確定點的坐標.

解:(1)由題意得, ,所以

所以橢圓方程為

2)設(shè), 的中點為

)證明:由,可設(shè)直線的方程為,

代入橢圓方程,得,

所以

所以,則直線的斜率為,

因為,所以,

所以三點共線,所以平分線段;

ii)由兩點間的距離公式得

由弦長公式得

所以,

,則,由上遞增,可得,即時,取得最小值4,

所以當取最小值時,點的坐標為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點,給出下列曲線方程:(1;(2;(3;(4,在曲線上存在點滿足的所有曲線是(

A.1)(2)(3)(4B.2)(3

C.1)(4D.2)(3)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當時,求上的最大值和最小值:

2)若,恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】依據(jù)某地某條河流8月份的水文觀測點的歷史統(tǒng)計數(shù)據(jù)所繪制的頻率分布直方圖如圖(甲)所示;依據(jù)當?shù)氐牡刭|(zhì)構(gòu)造,得到水位與災(zāi)害等級的頻率分布條形圖如圖(乙)所示.

試估計該河流在8月份水位的中位數(shù);

1)以此頻率作為概率,試估計該河流在8月份發(fā)生1級災(zāi)害的概率;

2)該河流域某企業(yè),在8月份,若沒受1、2級災(zāi)害影響,利潤為500萬元;若受1級災(zāi)害影響,則虧損100萬元;若受2級災(zāi)害影響則虧損1000萬元.

現(xiàn)此企業(yè)有如下三種應(yīng)對方案:

方案

防控等級

費用(單位:萬元)

方案一

無措施

0

方案二

防控1級災(zāi)害

40

方案三

防控2級災(zāi)害

100

試問,如僅從利潤考慮,該企業(yè)應(yīng)選擇這三種方案中的哪種方案?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為等差數(shù)列,各項為正的等比數(shù)列的前項和為,,__________.在①;②;③這三個條件中任選其中一個,補充在橫線上,并完成下面問題的解答(如果選擇多個條件解答,則以選擇第一個解答記分).

1)求數(shù)列的通項公式;

2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在①.的面積,③這三個條件中任選一個,補充在下面問題中,問題中的是否為等邊三角形,請說明理由.中,分別為內(nèi)角的對邊,且________,試判斷是否為等邊三角形?(注:如果選擇多個條件分別解答,按第一個解答計分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點M是棱長為2的正方體ABCD-A1B1C1D1的棱AD的中點,點P在面BCC1B1所在的平面內(nèi),若平面D1PM分別與平面ABCD和平面BCC1B1所成的銳二面角相等,則點P到點C1的最短距離是(

A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生將語文、數(shù)學(xué)、英語、物理、化學(xué)、生物科的作業(yè)安排在周六、周日完成,要求每天至少完成兩科,且數(shù)學(xué)、物理作業(yè)不在同一天完成,則完成作業(yè)的不同順序種數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次考試中,某班級50名學(xué)生的成績統(tǒng)計如下表,規(guī)定75分以下為一般,大于等于75分小于85分為良好,85分及以上為優(yōu)秀.

分數(shù)

69

73

74

75

77

78

79

80

82

83

85

87

89

93

95

合計

人數(shù)

2

4

4

2

3

4

6

3

3

4

4

5

2

3

1

50

經(jīng)計算,樣本的平均值,標準差.為評判該份試卷質(zhì)量的好壞,從其中任取一人,記其成績?yōu)?/span>X,并根據(jù)以下不等式進行評判:

;

;

評判規(guī)則:若同時滿足上述三個不等式,則被評為優(yōu)秀試卷;若僅滿足其中兩個不等式,則被評為合格試卷;其他情況,則被評為不合格試卷.

1)試判斷該份試卷被評為哪種等級;

2)按分層抽樣的方式從3個層次的學(xué)生中抽出10名學(xué)生,再從抽出的10名學(xué)生中隨機抽出4人進行學(xué)習(xí)方法交流,用隨機變量表示4人中成績優(yōu)秀的人數(shù),求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案