【題目】如圖,銳角△ABC中, = , = ,點(diǎn)M為BC的中點(diǎn). (Ⅰ)試用 表示 ;
(Ⅱ)若| |=5,| |=3,sin∠BAC= ,求中線AM的長(zhǎng).

【答案】解:(Ⅰ)∵M(jìn)是BC的中點(diǎn) ∴ = + )= + );
(Ⅱ)∵sin∠BAC= ,△ABC是銳角三角形,
∴cos∠BAC= ,
= +2 + )= (25+2×5×3× +9)=13,
∴| |= ,即中線AM=
【解析】(Ⅰ)根據(jù)向量的加法以及中點(diǎn)的定義求出 即可;(Ⅱ)求出∠BAC的余弦值,從而求出AM的長(zhǎng)即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平面向量的基本定理及其意義的相關(guān)知識(shí),掌握如果、是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù),使

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為.不過(guò)原點(diǎn)的直線相交于兩點(diǎn),且線段被直線平分.

1)求橢圓的方程;

2)求的面積取最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中有五張卡片,其中紅色卡片三張,標(biāo)號(hào)分別為1,2,3;藍(lán)色卡片兩張,標(biāo)號(hào)分別為1,2.
(1)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號(hào)之和小于4的概率;
(2)現(xiàn)袋中再放入一張標(biāo)號(hào)為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號(hào)之和小于4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于兩個(gè)圖形F1 , F2 , 我們將圖象F1上任意一點(diǎn)與圖形F2上的任意一點(diǎn)間的距離中的最小值,叫作圖形F1與F2圖形的距離,若兩個(gè)函數(shù)圖象的距離小于1,則這兩個(gè)函數(shù)互為“可及函數(shù)”,給出下列幾對(duì)函數(shù),其中互為“可及函數(shù)”的是 . (寫出所有正確命題的編號(hào)) ①f(x)=cosx,g(x)=2;
②f(x)=ex . g(x)=x;
③f(x)=log2(x2﹣2x+5),g(x)=sin ﹣x;
④f(x)=x+ ,g(x)=lnx+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)

平均每天鍛煉
的時(shí)間(分鐘)

[0,10)

[10,20)

[20,30)

[30,40)

[40,50)

[50,60)

總?cè)藬?shù)

20

36

44

50

40

10

將學(xué)生日均課外課外體育運(yùn)動(dòng)時(shí)間在[40,60)上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?

課外體育不達(dá)標(biāo)

課外體育達(dá)標(biāo)

合計(jì)

20

110

合計(jì)


(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的“課外體育達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的數(shù)學(xué)期望和方差.
參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以原點(diǎn)為圓心,單位長(zhǎng)度為半徑的圓上有兩點(diǎn)A( , ),B( , ). (Ⅰ)求 , 夾角的余弦值;
(Ⅱ)已知C(1,0),記∠AOC=α,∠BOC=β,求tan 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在實(shí)數(shù),當(dāng)時(shí), 恒成立, 則實(shí)數(shù)的取值范圍是

A B C D

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (其中為自然對(duì)數(shù)的底數(shù)).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

(2)若函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的k的值為(

A.7
B.6
C.5
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案