19.在△ABC中,已知sinB=$\frac{4}{5}$,cosA=$\frac{12}{13}$,則cosC=-$\frac{16}{65}$或$\frac{56}{65}$.

分析 由題意可得 cosA和sinA 的值,再根據(jù)sinB的值求得cosB的值,從而求得cosC=-cos(A+B)的值.

解答 解:△ABC中,∵cosA=$\frac{12}{13}$>$\frac{\sqrt{3}}{2}$,∴0<A<$\frac{π}{6}$,∴sinA=$\frac{5}{13}$.
∵sinB=$\frac{4}{5}$∈($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),∴B∈($\frac{π}{4}$,$\frac{π}{3}$),或B∈($\frac{2π}{3}$,$\frac{3π}{4}$)∴cosB=±$\frac{3}{5}$,
當(dāng)cosB=$\frac{3}{5}$ 時,cosC=-cos(A+B)=-cosAcosB+sinAsinB=-$\frac{12}{13}•\frac{3}{5}$+$\frac{5}{13}•\frac{4}{5}$=-$\frac{16}{65}$.
當(dāng)cosB=-$\frac{3}{5}$ 時,cosC=-cos(A+B)=-cosAcosB+sinAsinB=$\frac{12}{13}•\frac{3}{5}$+$\frac{5}{13}•\frac{4}{5}$=$\frac{56}{65}$.
故答案為:-$\frac{16}{65}$或$\frac{56}{65}$.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的余弦公式、誘導(dǎo)公式的應(yīng)用.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求和:Sn=$\frac{{2}^{2}+1}{{2}^{2}-1}$+$\frac{{3}^{2}+1}{{3}^{2}-1}$+…+$\frac{(n+1)^{2}+1}{(n+1)^{2}-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=-4sinx+1,x∈[-π,π]的單調(diào)性是( 。
A.在[-π,0]上是增函數(shù),在[0,π]上是減函數(shù)
B.在[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函數(shù),在[-π,-$\frac{π}{2}$]和[$\frac{π}{2}$,π]上都是減函數(shù)
C.在[0,π]上是增函數(shù),在[-π,0]上是減函數(shù)
D.在[$\frac{π}{2}$,π]和[-π,-$\frac{π}{2}$]上是增函數(shù),在[-$\frac{π}{2}$,$\frac{π}{2}$]上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=sin($\frac{π}{2}$x+$\frac{5π}{6}$)的最小正周期為( 。
A.$\frac{π}{3}$B.$\frac{π}{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知(1+2x)4(1-x23=a0+a1x+a2x2+…+a10x10
(Ⅰ)求a1+a2+…+a10的值;
(Ⅱ)求a2的值
(Ⅲ)將a1,a2,a3,a4,a5,a6這六個不同的符號,放入編號為1,2,3,4,5,6的6個盒子中,每個盒內(nèi)放一個數(shù),若a1,a2,a3,a4,a5,a6這六個符號中至多有三個符號的下標(biāo)與盒子編號相同,求不同的投放方法的種數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}中,a1=$\frac{1}{2}$,2an+1-an+1an-1=0(n∈N*
(1)求證:數(shù)列{$\frac{1}{1-{a}_{n}}$}是等差數(shù)列;
(2)若Tn=a1a2a3…an,設(shè)Sn=T12+T22+…+Tn2,證明:Sn>an+1-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}滿足a1=1,a2=2,an+2=$\frac{3}{2}$an+1-$\frac{1}{2}$an
(1)令bn=an+1-an,求證:{bn}為等比數(shù)列;
(2)求{an}的通項(xiàng)公式;
(3)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.函數(shù)f(x)為定義在R上周期為2的奇函數(shù),且x∈(-1,1)時,f(x)=$\frac{{3}^{x}-a}{{3}^{x}+1}$(a∈R).
(1)求a的值;
(2)求f(log${\;}_{\frac{1}{3}}$6)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.等比數(shù)列{an}滿足an=$\left\{\begin{array}{l}{{n}^{2},{a}_{n-1}<{n}^{2}}&{\;}\\{2{a}_{n-1},{a}_{n-1}≥{n}^{2}}&{\;}\end{array}\right.$(n≥2),則a1的取值范圍是{a1|a1≥$\frac{9}{2}$}.

查看答案和解析>>

同步練習(xí)冊答案