12.已知函數(shù)f(x)=kx3-3(k+1)x2-k2+1(k>0),若f(x)的單調(diào)遞減區(qū)間是(0,4).
(1)求k的值;
(2)當x>k時,求證:2$\sqrt{x}$>3-$\frac{1}{x}$.

分析 (1)求出函數(shù)的導數(shù),令f'(x)<0,求出函數(shù)f(x)的單調(diào)減區(qū)間,而f(x)的單調(diào)減區(qū)間為(0,4),它們是同一區(qū)間,建立等式關系,即可求出k的值;
(2)求出k的值,令g(x)=2$\sqrt{x}$+$\frac{1}{x}$-3,根據(jù)函數(shù)的單調(diào)性證明即可.

解答 解:(1)f'(x)=3kx2-6(k+1)x=0(k>0),
解得:x=0或 $\frac{2k+2}{k}$而 $\frac{2k+2}{k}$>2,
令f'(x)=3kx2-6(k+1)x<0,解得x∈(0,$\frac{2k+2}{k}$)
∴f(x)的單調(diào)減區(qū)間為(0,$\frac{2k+2}{k}$)
根據(jù)題意可知(0,4)=(0,$\frac{2k+2}{k}$),
即 $\frac{2k+2}{k}$=4,解得k=1,
所以k的值為1;
(2)由(1)得:x>1時,證明:2$\sqrt{x}$>3-$\frac{1}{x}$.
令g(x)=2$\sqrt{x}$+$\frac{1}{x}$-3,g′(x)=$\frac{1}{\sqrt{x}}$-$\frac{1}{{x}^{2}}$>0,
∴g(x)在(1,+∞)遞增,
∴g(x)>g(1)=0,
故x>1時,2$\sqrt{x}$>3-$\frac{1}{x}$.

點評 本題主要考查導函數(shù)的正負與原函數(shù)的單調(diào)性之間的關系,即當導函數(shù)大于0時原函數(shù)單調(diào)遞增,當導函數(shù)小于0時原函數(shù)單調(diào)遞減,同時考查了分析與解決問題的綜合能力,考查不等式的證明,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.若函數(shù)f(x)=4x2-kx-8在[5,8]上不是單調(diào)函數(shù),則k的取值范圍是(  )
A.(40,64)B.[40,64]C.(-∞,40)∪(64,+∞)D.(-∞,40]∪[64,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知在平面直角坐標系xoy中,O為坐標原點,曲線$C:\left\{\begin{array}{l}x=\sqrt{3}cosα+sinα\\ y=\sqrt{3}sinα-cosα\end{array}\right.$(α為參數(shù)),在以平面直角坐標系的原點為極點,x軸的正半軸為極軸,取相同單位長度的極坐標系,直線$l:ρsin({θ+\frac{π}{6}})=1$.
(1)求曲線C的普通方程和直線l的直角坐標方程;
(2)曲線C上恰好存在三個不同的點到直線l的距離相等,分別求出這三個點的極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知數(shù)組:$({\frac{1}{1}}),({\frac{1}{2},\frac{2}{1}}),({\frac{1}{3},\frac{2}{2},\frac{3}{1}}),({\frac{1}{4},\frac{2}{3},\frac{3}{2},\frac{4}{1}}),…,({\frac{1}{n},\frac{2}{n-1},\frac{3}{n-2},…\frac{n-1}{2},\frac{n}{1}})$,記該數(shù)組為:(a1),(a2,a3),(a3,a4,a5),…則a2009=7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=sin2x,則$f'({\frac{π}{6}})$=( 。
A.1B.$\sqrt{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知A=$\frac{π}{4}$,b2-a2=$\frac{1}{2}$c2
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值及△ABC的外接圓的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知定義在R上的奇函數(shù)f(x)滿足f(4-x)=f(x),f(-1)=6,數(shù)列{an}的前n項和為Sn,且a1=-1,Sn=2an+n (n∈N),則f(a5)+f(a6)=-12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若函數(shù)f(x)=x2+aln(x+1)在(-1,+∞)上是增函數(shù),則a的取值范圍是( 。
A.[0,+∞)B.(0,+∞)C.($\frac{1}{2}$,+∞)D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知f(x)=|1-$\frac{1}{x}$|,若存在實數(shù)a,b(a<b),使得y=f(x)在[a,b]上的值域為[ma,mb],求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案