分析 (1)求出函數(shù)的導數(shù),令f'(x)<0,求出函數(shù)f(x)的單調(diào)減區(qū)間,而f(x)的單調(diào)減區(qū)間為(0,4),它們是同一區(qū)間,建立等式關系,即可求出k的值;
(2)求出k的值,令g(x)=2$\sqrt{x}$+$\frac{1}{x}$-3,根據(jù)函數(shù)的單調(diào)性證明即可.
解答 解:(1)f'(x)=3kx2-6(k+1)x=0(k>0),
解得:x=0或 $\frac{2k+2}{k}$而 $\frac{2k+2}{k}$>2,
令f'(x)=3kx2-6(k+1)x<0,解得x∈(0,$\frac{2k+2}{k}$)
∴f(x)的單調(diào)減區(qū)間為(0,$\frac{2k+2}{k}$)
根據(jù)題意可知(0,4)=(0,$\frac{2k+2}{k}$),
即 $\frac{2k+2}{k}$=4,解得k=1,
所以k的值為1;
(2)由(1)得:x>1時,證明:2$\sqrt{x}$>3-$\frac{1}{x}$.
令g(x)=2$\sqrt{x}$+$\frac{1}{x}$-3,g′(x)=$\frac{1}{\sqrt{x}}$-$\frac{1}{{x}^{2}}$>0,
∴g(x)在(1,+∞)遞增,
∴g(x)>g(1)=0,
故x>1時,2$\sqrt{x}$>3-$\frac{1}{x}$.
點評 本題主要考查導函數(shù)的正負與原函數(shù)的單調(diào)性之間的關系,即當導函數(shù)大于0時原函數(shù)單調(diào)遞增,當導函數(shù)小于0時原函數(shù)單調(diào)遞減,同時考查了分析與解決問題的綜合能力,考查不等式的證明,是一道中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (40,64) | B. | [40,64] | C. | (-∞,40)∪(64,+∞) | D. | (-∞,40]∪[64,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,+∞) | B. | (0,+∞) | C. | ($\frac{1}{2}$,+∞) | D. | [$\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com