9.極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,兩坐標(biāo)系中的單位長度相同,已知曲線C的極坐標(biāo)方程為ρ=2(sinθ+cosθ).
(Ⅰ)求C的直角坐標(biāo)方程;
(Ⅱ)直線$l:\;\left\{\begin{array}{l}x=-\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù))與曲線C交于A,B兩點(diǎn),與y軸交于E,求|EA|+|EB|的值.

分析 (Ⅰ)將極坐標(biāo)方程兩邊同乘ρ,進(jìn)而根據(jù)ρ2=x2+y2,x=ρcosθ,y=ρsinθ,可求出C的直角坐標(biāo)方程;
(Ⅱ)將直線l的參數(shù)方程,代入曲線C的直角坐標(biāo)方程,求出對(duì)應(yīng)的t值,根據(jù)參數(shù)t的幾何意義,求出|EA|+|EB|的值.

解答 解:(Ⅰ)由ρ=2(sinθ+cosθ),兩邊同時(shí)乘以ρ,
得ρ2=2ρsinθ+2ρcosθ,因?yàn)棣?SUP>2=x2+y2,ρsinθ=y,ρcosθ=x,
所以曲線C的直角坐標(biāo)方程為:x2+y2=2y+2x,
整理得(x-1)2+(y-1)2=2…5分
(Ⅱ)將直線的參數(shù)方程$\left\{\begin{array}{l}x=-\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}\right.$代入圓的方程,
整理得${t^2}+\sqrt{2}t-1=0$,由韋達(dá)定理可得:${t_1}+{t_2}=-\sqrt{2},{t_1}{t_2}=-1$,
由直線的參數(shù)方程的幾何意義,
得:$\left|{EA}\right|+\left|{EB}\right|=\left|{t_1}\right|+\left|{t_2}\right|=\left|{{t_1}-{t_2}}\right|=\sqrt{{{({t_1}+{t_2})}^2}-4{t_1}{t_2}}=\sqrt{6}$…10分.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是參數(shù)方程與普通方程,直線與圓的位置關(guān)系,極坐標(biāo),熟練掌握極坐標(biāo)方程與普通方程之間互化的公式,及直線參數(shù)方程中參數(shù)的幾何意義是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某校為了解高一期末數(shù)學(xué)考試的情況,從高一的所有學(xué)生數(shù)學(xué)試卷中隨機(jī)抽取n份試卷進(jìn)行成績分析,得到數(shù)學(xué)成績頻率分布直方圖(如圖所示),其中成績在[50,60)的學(xué)生人數(shù)為6.
(Ⅰ)求直方圖中x的值;
(Ⅱ)求n的值;
(Ⅲ)試根據(jù)樣本估計(jì)“該校高一學(xué)生期末數(shù)學(xué)考試成績≥70”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且Sn=3n2-2n,
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-x+alnx(a>0)$
(1)若a=1,求f(x)的圖象在(1,f(1))處的切線方程;
(2)若f(x)在定義域上是單調(diào)函數(shù),求a的取值范圍;
(3)若f(x)存在兩個(gè)極值點(diǎn)x1,x2,求證:$f({x_1})+f({x_2})>-\frac{3+2ln2}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識(shí)競賽為主的《中國詩詞大會(huì)》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個(gè)等級(jí),隨機(jī)從中抽取了100名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級(jí)人數(shù)的條形圖.
(Ⅰ)若將一般等級(jí)和良好等級(jí)合稱為合格等級(jí),根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否有95%的把握認(rèn)為選手成績“優(yōu)秀”與文化程度有關(guān)?
優(yōu)秀合格合計(jì)
大學(xué)組
中學(xué)組
合計(jì)
注:K2$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(k2≥k00.100.050.005
k02.7063.8417.879
(Ⅱ)若江西參賽選手共80人,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級(jí)的選手人數(shù);
(Ⅲ)如果在優(yōu)秀等級(jí)的選手中取4名,在良好等級(jí)的選手中取2名,再從這6人中任選3人組成一個(gè)比賽團(tuán)隊(duì),求所選團(tuán)隊(duì)中的有2名選手的等級(jí)為優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知R上的奇函數(shù)f(x)滿足:當(dāng)x>0時(shí),f(x)=x2+x-1,則f[f(-1)]=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.三棱錐D-ABC及其三視圖中的正視圖和俯視圖如圖所示,則棱BD的長為( 。
A.2$\sqrt{2}$B.2$\sqrt{3}$C.3$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.規(guī)定投擲飛鏢3次為一輪,若3次中至少兩次投中8環(huán)以上為優(yōu)秀,現(xiàn)采用隨機(jī)模擬實(shí)驗(yàn)的方法估計(jì)某人投擲飛鏢的情況:先由計(jì)算器產(chǎn)生隨機(jī)數(shù)0或1,用0表示該次投標(biāo)未在8環(huán)以上,用1表示該次投標(biāo)在8環(huán)以上;再以每三個(gè)隨機(jī)數(shù)作為一組,代表一輪的結(jié)果,經(jīng)隨機(jī)模擬實(shí)驗(yàn)產(chǎn)生了如下20組隨機(jī)數(shù):
101  111  011  101  010  100  100  011  111  110
000  011  010  001  111  011  100  000  101  101
據(jù)此估計(jì),該選手投擲飛鏢三輪,至少有一輪可以拿到優(yōu)秀的概率為( 。
A.$\frac{8}{125}$B.$\frac{117}{125}$C.$\frac{81}{125}$D.$\frac{27}{125}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.從集合{-2,-1,1,2}中有放回地任取2次元素分別作為直線Ax+By=0中的A、B,則該直線恰好為坐標(biāo)系第二、四象限角平分線的概率是(  )
A.$\frac{1}{25}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案