【題目】已知橢圓的離心率為,且過點(diǎn).

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)問:是否存在過點(diǎn)的直線l,使以直線l被橢圓E所截得的弦為直徑的圓過點(diǎn),若存在,求出直線l的方程;若不存在,請說明理由.

【答案】1;(2)存在直線

【解析】

1)根據(jù)橢圓的離心率公式及橢圓過點(diǎn)A,即可求得ab的值,即可求得橢圓方程;

2)討論直線l的斜率不存在,求得C,D的坐標(biāo),可得符合題意;設(shè)直線的斜率存在,設(shè)為,代入橢圓方程,運(yùn)用韋達(dá)定理和判別式大于0,由以為直徑的圓過定點(diǎn),可得,由向量的數(shù)量積的坐標(biāo)表示,解方程可得所求斜率,即可判斷存在性.

1)由題意過點(diǎn),則,

∵橢圓的離心率,則,,

∴橢圓的標(biāo)準(zhǔn)方程:

當(dāng)直線l的斜率不存在時,直線l即為y軸,

此時C,D為橢圓C的短軸端點(diǎn),以為直徑的圓經(jīng)過點(diǎn);

當(dāng)直線l的斜率存在時,設(shè)其斜率為k,由,

,

所以.

設(shè),,則

,

因?yàn)橐?/span>為直徑的圓過定點(diǎn),

所以,則,即.

所以.

將①式代入②式整理解得.滿足.

綜上可知,存在直線,使得以為直徑的圓經(jīng)過點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在正整數(shù)n的各位數(shù)字中,共含有個1,個2,,個n.證明:并確定使等號成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某射擊運(yùn)動員每次擊中目標(biāo)的概率都是0.7.現(xiàn)采用隨機(jī)模擬的方法估計該運(yùn)動員射擊4次,至少擊中2次的概率:先由計算器算出0~9之間取整數(shù)值的隨機(jī)數(shù),指定0,1,2表示沒有擊中目標(biāo),3,4,5,6,7,8,9表示擊中目標(biāo);因?yàn)樯鋼?次,故以每4個隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):

5727 0293 7140 9857 0347

4373 8636 9647 1417 4698

0371 6233 2616 8045 6011

3661 9597 7424 6710 4281

據(jù)此估計,該射擊運(yùn)動員射擊4次至少擊中2次的概率為( )

A. 0.8 B. 0.85 C. 0.9 D. 0.95

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)歷年市場行情,某種農(nóng)產(chǎn)品在4月份的30天內(nèi)每噸的售價p(萬元)與時間t(天)的關(guān)系如圖的折線表示.又知該農(nóng)產(chǎn)品在30天內(nèi)的日交易量Q(噸)與時間t(天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示.

t

4

10

16

22

Q(噸)

36

30

24

18

1)根據(jù)提供的圖象,求出該種農(nóng)產(chǎn)品每噸的售價p(萬元)與時間t(天)所滿足的函數(shù)關(guān)系式;

2)若該農(nóng)產(chǎn)品日交易額每噸的售價日交易量,求在這30天中,該農(nóng)產(chǎn)品日交易額y(萬元)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某巨型摩天輪.其旋轉(zhuǎn)半徑50米,最高點(diǎn)距地面110米,運(yùn)行一周大約21分鐘.某人在最低點(diǎn)的位置坐上摩天輪,則第35分鐘時他距地面大約為( )米.

A. 75 B. 85 C. 100 D. 110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年,隨著中國第一款5G手機(jī)投入市場,5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠家通過數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)萬臺,其總成本為,其中固定成本為800萬元,并且每生產(chǎn)1萬臺的生產(chǎn)成本為1000萬元(總成本=固定成本+生產(chǎn)成本),銷售收入萬元滿足

1)將利潤表示為產(chǎn)量萬臺的函數(shù);

2)當(dāng)產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有某高新技術(shù)企業(yè)年研發(fā)費(fèi)用投入(百萬元)與企業(yè)年利潤(百萬元)之間具有線性相關(guān)關(guān)系,近5年的年科研費(fèi)用和年利潤具體數(shù)據(jù)如下表:

年科研費(fèi)用(百萬元)

1

2

3

4

5

企業(yè)所獲利潤(百萬元)

2

3

4

4

7

(1)畫出散點(diǎn)圖;

(2)求的回歸直線方程;

3)如果該企業(yè)某年研發(fā)費(fèi)用投入8百萬元,預(yù)測該企業(yè)獲得年利潤為多少?

參考公式:用最小二乘法求回歸方程的系數(shù)計算公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )

A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解手機(jī)品牌的選擇是否和年齡的大小有關(guān),隨機(jī)抽取部分華為手機(jī)使用者和蘋果機(jī)使用者進(jìn)行統(tǒng)計,統(tǒng)計結(jié)果如下表:

年齡 手機(jī)品牌

華為

蘋果

合計

30歲以上

40

20

60

30歲以下(含30歲)

15

25

40

合計

55

45

100

附:

P

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

根據(jù)表格計算得的觀測值,據(jù)此判斷下列結(jié)論正確的是(

A.沒有任何把握認(rèn)為手機(jī)品牌的選擇與年齡大小有關(guān)

B.可以在犯錯誤的概率不超過0.001的前提下認(rèn)為手機(jī)品牌的選擇與年齡大小有關(guān)

C.可以在犯錯誤的概率不超過0.01的前提下認(rèn)為手機(jī)品牌的選擇與年齡大小有關(guān)

D.可以在犯錯誤的概率不超過0.01手機(jī)品牌的選擇與年齡大小無關(guān)

查看答案和解析>>

同步練習(xí)冊答案