【題目】已知函數(shù),令

1)當時,求函數(shù)的單調(diào)區(qū)間;

2)若關于的不等式恒成立,求整數(shù)的最小值.

【答案】1的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

2

【解析】

1)先求函數(shù)的定義域,然后求導,通過導數(shù)大于零得到增區(qū)間;

2)不等式恒成立問題轉化為函數(shù)的最值問題,應先求導數(shù),研究函數(shù)的單調(diào)性,然后求函數(shù)的最值;

解:(1)當時,

,所以.所以的單調(diào)遞增區(qū)間為

,所以.所以的單調(diào)遞減區(qū)間為

綜上可得:的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

2)令

所以

時,因為,所以所以上是遞增函數(shù),

又因為

所以關于的不等式不能恒成立.

時,

,所以當時,;當時,

因此函數(shù)是增函數(shù),在是減函數(shù).

故函數(shù)的最大值為

,因為,

又因為上是減函數(shù),所以當時,

所以整數(shù)的最小值為2

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)在點處與軸相切

(1)求的值,并求的單調(diào)區(qū)間;

(2)當時,,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過正方體的頂點作平面,使得正方體的各棱與平面所成的角都相等,則滿足條件的平面的個數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)既存在極大值,又存在極小值.

1)求實數(shù)的取值范圍;

2)當時,,分別為的極大值點和極小值點.,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30)的快遞件數(shù)記錄結果中隨機抽取10天的數(shù)據(jù),整理如下:

甲公司員工410390,330,360,320,400,330,340370,350

乙公司員工360,420,370360,420,340,440,370,360,420

每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規(guī)定每件0.65元,乙公司規(guī)定每天350件以內(nèi)(350)的部分每件0.6元,超出350件的部分每件0.9.

1)根據(jù)題中數(shù)據(jù)寫出甲公司員工在這10天投遞的快件個數(shù)的平均數(shù)和眾數(shù);

2)為了解乙公司員工每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為 (單位:元),求的分布列和數(shù)學期望;

3)根據(jù)題中數(shù)據(jù)估算兩公司被抽取員工在該月所得的勞務費.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,的參數(shù)方程為t為參數(shù)).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.

1)求的普通方程和曲線C的直角坐標方程;

2)求曲線C上的點到距離的最大值及該點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)當時,總有,求的最小值;

2)對于中任意恒有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右頂點分別為C、D,且過點,P是橢圓上異于C、D的任意一點,直線PC,PD的斜率之積為

1)求橢圓的方程;

2O為坐標原點,設直線CP交定直線x = m于點M,m為何值時,為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖,給出了利用秦九韶算法求某多項式值的一個實例,若輸入x的值為2,則輸出的值為( )

A.80B.192C.448D.36

查看答案和解析>>

同步練習冊答案