8.如圖所示,一隧道內(nèi)設(shè)雙行線公路,其截面由一個長方形和拋物線構(gòu)成,為保證安全,要求行駛車輛頂部(設(shè)為平頂)與隧道頂部在豎直方向上高度之差至少要有0.5米,已知行車道總寬度|AB|=6米,那么車輛通過隧道的限制高度是多少米?

分析 先求出拋物線的解析式,再根據(jù)題意判斷該隧道能通過的車輛的最高高度即可得到結(jié)論.

解答 解:取隧道截面
拋物線的頂點(diǎn)為原點(diǎn),對稱軸為y軸,建立直角坐標(biāo)系,c(4,-4),
設(shè)拋物線方程x2=-2py(p>0),將點(diǎn)C代入拋物線方程得p=2,
∴拋物線方程為x2=-4y,行車道總寬度AB=6m,
∴將x=3代入拋物線方程,y=-2.25m,
∴限度為6-2.25-0.5=3.25m.
答:車輛通過隧道的限制高度是3.25米.

點(diǎn)評 本題主要考查了二次函數(shù)的實際應(yīng)用,解答二次函數(shù)的應(yīng)用問題時,要注意自變量的取值范圍還必須使實際問題有意義,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知$\overrightarrow a$=(2sinα,1),$\overrightarrow b$=(cosα,1),α∈(0,$\frac{π}{4}$).
(1)若$\overrightarrow a$∥$\overrightarrow b$,求tanα的值;
(2)若$\overrightarrow a$•$\overrightarrow b$=$\frac{9}{5}$,求sin(2α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.為了了解某校學(xué)生喜歡吃辣是否與性別有關(guān),隨機(jī)對此校100人進(jìn)行調(diào)查,得到如下的列表:
喜歡吃辣不喜歡吃辣合計
男生40                  1050                           
女生2030                      50
合計6040100
已知在全部100人中隨機(jī)抽取1人抽到喜歡吃辣的學(xué)生的概率為$\frac{3}{5}$.
p(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
(1)請將上面的列表補(bǔ)充完整;
(2)是否有99.9%以上的把握認(rèn)為喜歡吃辣與性別有關(guān)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.先后拋擲一枚硬幣,出現(xiàn)“一次正面,一次反面”的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.?dāng)?shù)列{an}滿足Sn=2n-an(n∈N*).
(1)計算a1、a2、a3,并猜想an的通項公式;
(2)用數(shù)學(xué)歸納法證明(1)中的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點(diǎn)P在直線l上,過P點(diǎn)作圓M的切線PA、PB,切點(diǎn)為A、B.
(1)若點(diǎn)P的坐標(biāo)為(0,0),求∠APB;
(2)若點(diǎn)P的坐標(biāo)為(2,1),過P作直線與圓M交于C、D兩點(diǎn),當(dāng)$CD=\sqrt{2}$時,求直線CD的方程;
(3)經(jīng)過A、P、M三點(diǎn)的圓是否經(jīng)過異于點(diǎn)M的定點(diǎn),若經(jīng)過,請求出此定點(diǎn)的坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長為4,且點(diǎn)$({1\;,\;\frac{{\sqrt{3}}}{2}})$在橢圓C上.
(1)求橢圓C的方程;
(2)若點(diǎn)P在第二象限,∠F2PF1=60°,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.計算下列各題:
(1)$({1-i})({-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i})({1+i})$
(2)i÷(4+3i)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖甲,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設(shè)點(diǎn)E、F分別為棱AC、AD的中點(diǎn).
(1)求證:DC⊥平面ABC;
(2)設(shè)CD=1,求三棱錐A-BFE的體積.

查看答案和解析>>

同步練習(xí)冊答案