【題目】如圖,在直三棱柱中, , ,點(diǎn)的中點(diǎn).

①求證:

②求點(diǎn)到平面的距離.

③求二面角的余弦值的大。

【答案】(1)見(jiàn)解析;(2);(3)

【解析】試題分析:(1)由等腰三角形得,由平面,故而可得平面,最后得結(jié)論;(2)點(diǎn)到平面的距離為.通過(guò)轉(zhuǎn)化,求點(diǎn)到平面的距離;(3)以為坐標(biāo)原點(diǎn), , , 軸,建立空間直角坐標(biāo)系,求出面和面的法向量,計(jì)算法向量的夾角,根據(jù)圖可判斷二面角為銳角,故可得角的大小.

試題解析:(1)∵在等腰中, 為斜邊中點(diǎn),∴,又∵在直三棱柱中, 平面, 平面 ,點(diǎn), 平面,平面 平面,

(2)設(shè)點(diǎn)到平面的距離為,在三棱錐中,∵,且平面,∴,易求得, ,∴,即點(diǎn)到平面的距離是

(3)如圖,

為坐標(biāo)原點(diǎn), , , , 軸,建立空間直角坐標(biāo)系, , , , , .設(shè)平面的一個(gè)法向量 , ,設(shè)平面的一個(gè)法向量, ,由圖知,所求二面角為銳角,余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角,A,B,C對(duì)邊的邊長(zhǎng)分別為a,b,c,且acosB﹣bcosA= c.
(1)求 的值;
(2)求tan(A﹣B)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形為菱形, , 相交于點(diǎn) 平面, 平面 , 中點(diǎn).

(Ⅰ)求證: 平面

(Ⅱ)求二面角的正弦值;

(Ⅲ)當(dāng)直線與平面所成角為時(shí),求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明計(jì)劃在811日至820日期間游覽某主題公園,根據(jù)旅游局統(tǒng)計(jì)數(shù)據(jù),該主題公園在此期間“游覽舒適度”(即在園人數(shù)與景區(qū)主管部門(mén)核定的最大瞬時(shí)容量之比, 以下為舒適, 為一般, 以上為擁擠),情況如圖所示,小明隨機(jī)選擇8月11日至8月19日中的某一天到達(dá)該主題公園,并游覽.

(1)求小明連續(xù)兩天都遇上擁擠的概率;

(2)設(shè)是小明游覽期間遇上舒適的天數(shù),求的分布列和數(shù)學(xué)期望;

(3)由圖判斷從哪天開(kāi)始連續(xù)三天游覽舒適度的方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形中,點(diǎn)分別是的中點(diǎn),交于點(diǎn),點(diǎn)分別在線段上,且.將分別沿折起,使點(diǎn)重合于點(diǎn),如圖2所示.

(1)求證:平面

(2)若正方形的邊長(zhǎng)為4,求三棱錐的內(nèi)切球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足:Sn=n2 , 等比數(shù)列{bn}滿(mǎn)足:b2=2,b5=16
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中石化集團(tuán)獲得了某地深海油田塊的開(kāi)采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料,進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)米布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口斷井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見(jiàn)下表:

井號(hào)

坐標(biāo)

鉆探深度

出油量

(1)號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計(jì)的預(yù)報(bào)值;

(2)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)號(hào)并計(jì)算出的的值(精確到)與(1)中的值差不超過(guò),則使用位置最接近的已有舊井,否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?

(參考公式和計(jì)算結(jié)果:

(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱(chēng)為優(yōu)質(zhì)井,那么在原有口井中任意勘探口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司即將推車(chē)一款新型智能手機(jī),為了更好地對(duì)產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購(gòu)買(mǎi)該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購(gòu)買(mǎi)意愿的問(wèn)卷調(diào)查,若得分低于60分,說(shuō)明購(gòu)買(mǎi)意愿弱;若得分不低于60分,說(shuō)明購(gòu)買(mǎi)意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購(gòu)買(mǎi)該款手機(jī)與年齡有關(guān)?

購(gòu)買(mǎi)意愿強(qiáng)

購(gòu)買(mǎi)意愿弱

合計(jì)

20~40歲

大于40歲

合計(jì)

(2)從購(gòu)買(mǎi)意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,求這2人都是年齡大于40歲的概率.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且an和Sn滿(mǎn)足:4Sn=(an+1)2(n=1,2,3…),
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案