過(guò)點(diǎn)P(-1,4)作圓x2+y2-4x-6y+12=0的切線,則切線長(zhǎng)為( 。
A、3
B、
5
C、
10
D、5
考點(diǎn):圓的切線方程
專(zhuān)題:直線與圓
分析:把圓的一般方程化為標(biāo)準(zhǔn)方程,求出圓心到點(diǎn)P的距離d,根據(jù)圓的半徑r,即可求出切線長(zhǎng)l.
解答: 解:∵圓x2+y2-4x-6y+12=0的標(biāo)準(zhǔn)方程是
(x-2)2+(x-3)2=1,
∴圓心(2,3)到點(diǎn)P的距離是
d=
(2+1)2+(3-4)2
=
10
;
圓的半徑r=1,
∴切線長(zhǎng)為
l=
d2-r2
=
(
10
)
2
-12
=3.
故選:A.
點(diǎn)評(píng):本題考查了直線與圓的應(yīng)用問(wèn)題,解題時(shí)應(yīng)熟練地掌握?qǐng)A的標(biāo)準(zhǔn)方程與一般方程的互化問(wèn)題,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓(x-a)2+(y-b)2=1與二直線l1:3x-4y-1=0和l2:4x+3y+1=0都有公共點(diǎn),則
b
a-2
的取值范圍為( 。
A、[-
14
23
,
1
43
]
B、[
1
43
,
3
4
]
C、(-∞,-
14
23
]∪[
3
4
,+∞)
D、[-
14
23
,
3
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線m,n和平面α,滿足m?α,n∥α,則直線m,n的關(guān)系是(  )
A、平行B、相交
C、異面D、平行或異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,以C(1,-2)為圓心的圓與直線x+y+3
2
+1=0相切.
(1)求圓C的方程;
(2)是否存在斜率為1的直l,使得以l被圓C截得的弦AB為直徑的圓過(guò)坐標(biāo)原點(diǎn),若存在,求出直線l方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐V-ABCD中,底面ABCD是正方形,側(cè)棱VA⊥底面ABCD,點(diǎn)E為VA的中點(diǎn).
(Ⅰ)求證:VC∥平面BED;
(Ⅱ)求證:平面VAC⊥平面BED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={1,2,3,4},B={1,3},則CAB
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn表示數(shù)列{an}的前n項(xiàng)和.
(1)若{an}為等差數(shù)列,推導(dǎo)Sn的計(jì)算公式;
(2)已知{an}是首項(xiàng)為1,公差為1的等差數(shù)列;若數(shù)列{bn}滿足b1=1,bn+1=bn+2 an.求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+4x+2b-4a,當(dāng)x∈(-∞,-2)∪(6,+∞)時(shí),f(x)<0;當(dāng)x∈(-2,6)時(shí),f(x)>0.
(1)求a、b的值;
(2)設(shè)F(x)=-kf(x)+4(k+1)x+2(6k-1),當(dāng)k取何值時(shí),對(duì)?x∈[0,2],函數(shù)F(x)的值恒為負(fù)數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x>0,y>0,且xy+2x+y=6,則x+y的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案