分析 利用導(dǎo)數(shù)研究函數(shù)f(x)在(0,e]上的單調(diào)性,由單調(diào)性即可求得最大值.
解答 解:f′(x)=$\frac{1}{x}$-1=$\frac{1-x}{x}$,
當(dāng)x∈(0,1)時,f′(x)>0,當(dāng)x∈(1,e)時,f′(x)<0,
所以f(x)在(0,1)上遞增,在(1,e)上遞減,
故當(dāng)x=1時f(x)取得極大值,也為最大值,f(1)=-1,
故答案為:-1.
點評 本題考查利用導(dǎo)數(shù)研究函數(shù)在區(qū)間上的最值問題,屬基礎(chǔ)題,準(zhǔn)確求導(dǎo),熟練運算,是解決該類問題的基礎(chǔ).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=±\frac{{\sqrt{17}}}{17}x$ | B. | $y=±\frac{{\sqrt{5}}}{5}x$ | C. | $y=±\frac{{\sqrt{15}}}{15}x$ | D. | $y=±\frac{{\sqrt{3}}}{3}x$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -2 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | -1 | 0 | 2 | 4 | 5 |
f(x) | 1 | 2 | 0 | 2 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 6$\sqrt{2}$ | C. | 4$\sqrt{3}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com