6.已知隨機(jī)變量ξ服從正態(tài)分布N(2,σ2),若P(0≤ξ≤2)=0.3,則P(ξ≥4)=( 。
A.0.2B.0.3C.0.6D.0.8

分析 隨機(jī)變量ξ的均值為2,根據(jù)正態(tài)分布的對稱性即可得出答案.

解答 解:∵隨機(jī)變量ξ服從正態(tài)分布N(2,σ2),
∴P(ξ≤2)=P(ξ>2)=0.5,
∵P(0≤ξ≤2)=0.3,∴P(2<ξ<4)=0.3,
∴P(ξ>4)=P(ξ>2)-P(2<ξ<4)=0.2.
故選:A.

點評 本題考查了正態(tài)分布的對稱性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知拋物線C:y2=2px(p>0)的焦點為F,點M(x0,4)是拋物線C上一點,以M為圓心,|MF|為半徑的圓被直線x=-1截得的弦長為2$\sqrt{7}$,則|MF|等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖1,菱形ABCD的對角線AC與BD交于點E,∠BAD=60°,將△BAD折起,使得點A到點A′的位置,點P滿足$\overrightarrow{CP}$=λ$\overrightarrow{CA′}$+(1-λ)$\overrightarrow{CE}$.

(1)證明:BD⊥CP;
(2)若λ=$\frac{1}{2}$,二面角A′-BD-C為120°,求直線BP與平面A′CD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若x,y滿足約束條件$\left\{{\begin{array}{l}{x-y≤0}\\{2x-y≥0}\\{2x+y≤4}\end{array}}\right.$,z=x+y+3與z=x+ny取得最大值的最優(yōu)解相同,則實數(shù)n的取值范圍是(  )
A.{1}B.$({-∞,\frac{1}{2}})$C.$({\frac{1}{2},+∞})$D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{m}{x}$+xlnx(m>0),g(x)=lnx-2.
(1)當(dāng)m=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)h(x)=f(x)-xg(x)-$\sqrt{2}$,x>0.若函數(shù)y=h(h(x))的最小值是$\frac{3\sqrt{2}}{2}$,求m的值;
(3)若函數(shù)f(x),g(x)的定義域都是[1,e],對于函數(shù)f(x)的圖象上的任意一點A,在函數(shù)g(x)的圖象上都存在一點B,使得OA⊥OB,其中e是自然對數(shù)的底數(shù),O為坐標(biāo)原點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某研究性學(xué)習(xí)小組調(diào)查研究性別對喜歡吃甜食的影響,部分統(tǒng)計數(shù)據(jù)如表:
  女生 男生 合計
 喜歡吃甜食 8 4 12
 不喜歡吃甜食216 18
 合計 10 20 30
附表:
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
經(jīng)計算K2=10,則下列選項正確的是( 。
A.有99.5%的把握認(rèn)為性別對喜歡吃甜食無影響
B.有99.5%的把握認(rèn)為性別對喜歡吃甜食有影響
C.有99.9%的把握認(rèn)為性別對喜歡吃甜食無影響
D.有99.9%的把握認(rèn)為性別對喜歡吃甜食有影響

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若拋物線y2=8x的焦點F與雙曲線$\frac{x^2}{3}-\frac{y^2}{n}=1$的一個焦點重合,則n的值為( 。
A.2B.-1C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-1(x≤0)}\\{f(x-1)(x>0)}\end{array}\right.$,若函數(shù)g(x)=f(x)-ax+1有5個不同的零點,則實數(shù)α的取值范圍是[$\frac{1}{5}$,$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,M,N分別為棱PD,PC的中點.求證:
(1)MN∥平面PAB
(2)AM⊥平面PCD.

查看答案和解析>>

同步練習(xí)冊答案