18.若拋物線y2=8x的焦點F與雙曲線$\frac{x^2}{3}-\frac{y^2}{n}=1$的一個焦點重合,則n的值為( 。
A.2B.-1C.1D.4

分析 根據(jù)題意,由拋物線的方程可得其焦點坐標(biāo),結(jié)合題意可得雙曲線的一個焦點為(2,0),即c=2;由雙曲線的幾何性質(zhì)可得3+n=4,解可得n的值.

解答 解:拋物線的方程為y2=8x,則其焦點P為(2,0),
若雙曲線$\frac{x^2}{3}-\frac{y^2}{n}=1$的一個焦點與P重合,
即雙曲線的一個焦點為(2,0),
即c=2;
則有3+n=4,
解可得n=1;
故選:C.

點評 本題考查雙曲線、拋物線的幾何性質(zhì),關(guān)鍵是掌握雙曲線標(biāo)準(zhǔn)方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)$f(x)=\left\{\begin{array}{l}|{log_2}x|,x>0\\-{x^2}-2x,x≤0\end{array}\right.$,關(guān)于x的方程f(x)=m(m∈R)有四個不同的實數(shù)解x1,x2,x3,x4則x1x2x3x4的取值范圍為(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=a(x-$\frac{1}{x}$)-2lnx(a∈R).
(1)當(dāng)a=2時,求曲線f(x)在x=2處的切線方程;
(2)若a>$\frac{2e}{{e}^{2}+1}$,且m、n分別為f(x)的極大值和極小值,S=m-n,求證:S<$\frac{8}{{e}^{2}+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知隨機(jī)變量ξ服從正態(tài)分布N(2,σ2),若P(0≤ξ≤2)=0.3,則P(ξ≥4)=( 。
A.0.2B.0.3C.0.6D.0.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)D為△ABC的所在平面內(nèi)一點,$\overrightarrow{BC}=-4\overrightarrow{CD}$,則$\overrightarrow{AD}$=(  )
A.$\frac{1}{4}\overrightarrow{AB}-\frac{3}{4}\overrightarrow{AC}$B.$\frac{1}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AC}$C.$\frac{3}{4}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC}$D.$\frac{3}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.證明:若點O是△ABC的內(nèi)心,則sinA$\overrightarrow{OA}$+sinB$\overrightarrow{OB}$+sinC$\overrightarrow{OC}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若0<x<π,判斷x與sinx的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知A={(x,y)|x2+y2≤π2},B是曲線y=sinx與x軸圍成的封閉區(qū)域,若向區(qū)域A內(nèi)隨機(jī)投入一點M,則點M落入?yún)^(qū)域B的概率為( 。
A.$\frac{2}{π}$B.$\frac{4}{π}$C.$\frac{2}{{π}^{3}}$D.$\frac{4}{{π}^{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.三棱錐A-BCD中,DA⊥AC,DB⊥BC,DA=AC,DB=BC,AB=$\frac{{\sqrt{2}}}{2}$CD,若三棱錐A-BCD的體積為$\frac{{2\sqrt{2}}}{3}$,則CD的長為(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案