1.為考察某種藥物對預(yù)防禽流感的效果,在四個不同的實(shí)驗(yàn)室取相同的個體進(jìn)行動物試驗(yàn),根據(jù)四個實(shí)驗(yàn)室得到的列聯(lián)表畫出如下四個等高條形圖,最能體現(xiàn)該藥物對預(yù)防禽流感有效果的圖形是( 。
A.B.C.D.

分析 根據(jù)四個列聯(lián)表中的等高條形圖看出不服藥與服藥時患禽流感的差異大小,從而得出結(jié)論.

解答 解:根據(jù)四個列聯(lián)表中的等高條形圖知,
圖形D中不服藥與服藥時患禽流感的差異最大,
它最能體現(xiàn)該藥物對預(yù)防禽流感有效果.
故選:D.

點(diǎn)評 本題考查了列聯(lián)表中條形圖的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=sinωxcosωx-$\sqrt{3}{cos^2}ωx+\frac{{\sqrt{3}}}{2}$(ω>0)圖象的兩條相鄰對稱軸為$\frac{π}{2}$.
(1)求函數(shù)y=f(x)的對稱軸方程;
(2)若函數(shù)y=f(x)-$\frac{1}{3}$在(0,π)上的零點(diǎn)為x1,x2,求cos(x1-x2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某中學(xué)高一、高二年級各有8個班,學(xué)校調(diào)查了春學(xué)期各班的文學(xué)名著閱讀量(單位:本),并根據(jù)調(diào)查結(jié)果,得到如下所示的莖葉圖:

為鼓勵學(xué)生閱讀,在高一、高二兩個兩個年級中,學(xué)校將閱讀量高于本年級閱讀量平均數(shù)的班級命名為該年級的“書香班級”.
(1)當(dāng)a=4時,記高一年級“書香班級”數(shù)為m,高二年級的“書香班級”數(shù)為n,比較m,n的大小關(guān)系;
(2)在高一年級8個班級中,任意選取兩個,求這兩個班級均是“書香班級”的概率;
(3)若高二年級的“書香班級”數(shù)多于高一年級的“書香班級”數(shù),求a的值(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示的幾何體中,四邊形ABCD為等腰梯形,AB∥CD,AB=2AD=2,∠DAB=60°,四邊形CDEF為正方形,平面CDEF⊥平面ABCD.
(Ⅰ)若點(diǎn)G是棱AB的中點(diǎn),求證:EG∥平面BDF;
(Ⅱ)求直線AE與平面BDF所成角的正弦值;
(Ⅲ)在線段FC上是否存在點(diǎn)H,使平面BDF⊥平面HAD?若存在,求$\frac{FH}{HC}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{(x-1)^2}+2,\;\;\;x≤1\\ \frac{1}{x}+1,\;\;x>1\;.\;\;\end{array}\right.$下列四個命題:
①f(f(1))>f(3);
②?x0∈(1,+∞),$f'({x_0})=-\frac{1}{3}$;
③f(x)的極大值點(diǎn)為x=1;
④?x1,x2∈(0,+∞),|f(x1)-f(x2)|≤1
其中正確的有①②③④.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在復(fù)平面內(nèi),復(fù)數(shù)z的對應(yīng)點(diǎn)為(1,2),復(fù)數(shù)z的共軛復(fù)數(shù)為( 。
A.1+2iB.1-2iC.-2+iD.-2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知曲線C的方程為$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x+1)^{2}+{y}^{2}}$=4,則曲線C的離心率$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)過點(diǎn)$(\sqrt{2},2\sqrt{2})$,過點(diǎn)(0,-2)的直線l與雙曲線C的一條漸進(jìn)線平行,且這兩條平行線間的距離為$\frac{2}{3}$,則雙曲線C的實(shí)軸長為( 。
A.2B.$2\sqrt{2}$C.4D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若直線l的極坐標(biāo)方程為$\sqrt{2}ρcos(θ-\frac{π}{4})-2=0$,曲線C的極坐標(biāo)方程為:ρsin2θ=cosθ,將曲線C上所有點(diǎn)的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,然后再向右平移一個單位得到曲線C1
(Ⅰ)求曲線C1的直角坐標(biāo)方程;
(Ⅱ)已知直線l與曲線C1交于A,B兩點(diǎn),點(diǎn)P(2,0),求|PA|+|PB|的值.

查看答案和解析>>

同步練習(xí)冊答案