4.△ABC中,D是BC的中點(diǎn),∠BAC=120°,sinB=2sinC,AD=1,則AC的長(zhǎng)為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4\sqrt{3}}{3}$C.$\frac{2\sqrt{7}}{7}$D.$\frac{4\sqrt{7}}{7}$

分析 根據(jù)正余弦定理求出a與c的關(guān)系和cosB,即可得答案.

解答 解:由余弦定理:可得cos120°=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$,
正余弦定理:sinB=2sinC,可得b=2c.
∴a=$\sqrt{7}c$.
那么cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{2\sqrt{7}}{7}$
在△ABD中,D是BC的中點(diǎn),即BD=$\frac{1}{2}$a=$\frac{\sqrt{7}}{2}c$,AD=1,
由余弦定理:
可得cosB=$\frac{2\sqrt{7}}{7}$
=$\frac{A{B}^{2}+B{D}^{2}-A{D}^{2}}{2AB•BD}$.
∴AB=$\frac{2\sqrt{3}}{3}$.
那么:AC=$\frac{4\sqrt{3}}{3}$
故選B.

點(diǎn)評(píng) 本題主要考查了正余弦定理的合理運(yùn)用和計(jì)算能力.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.等差數(shù)列{an}中,若a10-a6=4,a2,a4,a8成等比數(shù)列,則a1=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-2,x≤0}\\{f(x-2)+1,x>0}\end{array}\right.$,則f(2018)=1008.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知一個(gè)四面體ABCD的每個(gè)頂點(diǎn)都在表面積為9π的球O的表面上,且AB=CD=a,AC=AD=BC=BD=$\sqrt{5}$,則a=$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某中學(xué)的高二(1)班男同學(xué)有45名,女同學(xué)有15名,老師按照分層抽樣的方法組建了一個(gè)4人的課外興趣小組.
(Ⅰ)求課外興趣小組中男、女同學(xué)的人數(shù);
(Ⅱ)經(jīng)過(guò)一個(gè)月的學(xué)習(xí)、討論,這個(gè)興趣小組決定隨機(jī)選出兩名同學(xué)分別去做某項(xiàng)試驗(yàn),求選出的兩名同學(xué)中恰有一名女同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,點(diǎn)A(-$\sqrt{2}$,1)關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn)B,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率是$\frac{\sqrt{2}}{2}$,且過(guò)點(diǎn)B.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)P是橢圓C上的異于點(diǎn)A,B的一動(dòng)點(diǎn),直線AP斜率為k1,直線BP斜率為k2,證明:k1•k2=-$\frac{1}{2}$;
(Ⅲ)是否存在直線l與橢圓C交于不同的兩點(diǎn)M,N,使四邊形OMBN為平行四邊形,若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.給出下面類比推理:(注:下列集合C為復(fù)數(shù)集)
①由“若2a<2b,則a<b”,可類比推出:“若a2<b2,則a<b”;
②由“(a+b)c=ac+bc(c≠0)”,可類比推出“$\frac{a+b}{c}=\frac{a}{c}+\frac{c}(c≠0)$”;
③由“當(dāng)a,b∈R,若a-b=0,則a=b”,可類比推出“當(dāng)a,b∈C,若a-b=0,則a=b”;
④由“當(dāng)a,b∈R,若a-b>0,則a>b”,可類比推出“當(dāng)a,b∈C,若a-b>0,則a>b”.
其中結(jié)論正確的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在探究“點(diǎn)P0(x0,y0)到直線l:Ax+By+C=0的距離公式”的數(shù)學(xué)活動(dòng)中,小華同學(xué)進(jìn)行了如下思考,并得出以下距離公式:
(Ⅰ)①當(dāng)A=0時(shí),點(diǎn)P0(x0,y0)到直線l:By+C=0的距離為$\frac{|{By}_{0}+C|}{\sqrt{{B}^{2}}}$;
②當(dāng)B=0時(shí),點(diǎn)P0(x0,y0)到直線l:Ax+C=0的距離為$\frac{|{Ax}_{0}+C|}{\sqrt{{A}^{2}}}$;
③當(dāng)A≠0且B≠0時(shí),點(diǎn)P0(x0,y0)到直線l:Ax+By+C=0的距離為$\frac{|{Ax}_{0}+{By}_{0}+C|}{\sqrt{{A}^{2}{+B}^{2}}}$.
(Ⅱ)試證明當(dāng)A≠0且B≠0時(shí),點(diǎn)P0(x0,y0)到直線l:Ax+By+C=0的距離公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若復(fù)數(shù)$\frac{1+2ai}{2-i}$(a∈R)的實(shí)部和虛部相等.則實(shí)數(shù)a的值為$\frac{1}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案