【題目】人的正常體溫在之間,下圖是一位病人在治療期間的體溫變化圖.

現(xiàn)有下述四個(gè)結(jié)論:

此病人已明顯好轉(zhuǎn);

治療期間的體溫極差小于;

從每8小時(shí)的變化來(lái)看,250時(shí)~8時(shí)體溫最穩(wěn)定;

3228時(shí)開始,每8小時(shí)量一次體溫,若體溫不低于就服用退燒藥,根據(jù)圖中信息可知該病人服用了3次退燒藥.

其中所有正確結(jié)論的編號(hào)是(

A.③④B.②③C.①②④D.①②③

【答案】D

【解析】

根據(jù)折線圖,分析圖中的數(shù)據(jù)逐一判斷即可.

從治療過程看,此病人已明顯好轉(zhuǎn),正確;

治療期間體溫最高為,最低略高于,極差小于,正確;

從每8小時(shí)的變化來(lái)看,250時(shí)~8時(shí)最穩(wěn)定,正確;

2次不低于,可知服用2次退燒藥,錯(cuò)誤.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2002名運(yùn)動(dòng)員,號(hào)碼依次為.從中選出若干名運(yùn)動(dòng)員參加儀仗隊(duì),但要使剩下的運(yùn)動(dòng)員中沒有一個(gè)人的號(hào)碼數(shù)等于另外兩人的號(hào)碼數(shù)的乘積.那么,被選為儀仗隊(duì)的運(yùn)動(dòng)員至少能有多少人?給出你的選取方案,并簡(jiǎn)述理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)十進(jìn)制正整數(shù)中,如果它含有偶數(shù)(包括零)個(gè)數(shù)字 8 ,則稱它為“優(yōu)數(shù)” ,否則就稱它為“非優(yōu)數(shù)” .那么,長(zhǎng)度(位數(shù))不超過是正整數(shù))的所有“優(yōu)數(shù)” 的個(gè)數(shù)是 __________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知常數(shù)項(xiàng)為的函數(shù)的導(dǎo)函數(shù)為,其中為常數(shù).

(1)當(dāng)時(shí),求的最大值;

(2)若在區(qū)間為自然對(duì)數(shù)的底數(shù))上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某書店剛剛上市了《中國(guó)古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價(jià)進(jìn)行試銷,每種單價(jià)(元)試銷l天,得到如表單價(jià)(元)與銷量(冊(cè))數(shù)據(jù):

單價(jià)(元)

18

19

20

21

22

銷量(冊(cè))

61

56

50

48

45

(l)根據(jù)表中數(shù)據(jù),請(qǐng)建立關(guān)于的回歸直線方程:

(2)預(yù)計(jì)今后的銷售中,銷量(冊(cè))與單價(jià)(元)服從(l)中的回歸方程,已知每?jī)?cè)書的成本是12元,書店為了獲得最大利潤(rùn),該冊(cè)書的單價(jià)應(yīng)定為多少元?

附:,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知點(diǎn),曲線的參數(shù)方程為為參數(shù)),點(diǎn)是曲線上的任意一點(diǎn),點(diǎn)的中點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求點(diǎn)的軌跡的極坐標(biāo)方程;

2)已知直線與曲線交于點(diǎn),射線逆時(shí)針旋轉(zhuǎn)交曲線于點(diǎn),且,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,且投資1萬(wàn)元時(shí)的收益為萬(wàn)元,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,且投資1萬(wàn)元時(shí)的收益為0.5萬(wàn)元,

1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系;

2)該家庭現(xiàn)有20萬(wàn)元資金,全部用于理財(cái)投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨機(jī)抽取某校高一100名學(xué)生的期末考試英語(yǔ)成績(jī)(他們的英語(yǔ)成績(jī)都在80分140分之間),將他們的英語(yǔ)成績(jī)(單位:分)分成:,,,,六組,得到如圖所示的部分頻率分布直方圖,已知成績(jī)處于內(nèi)與內(nèi)的頻數(shù)之和等于成績(jī)處于內(nèi)的頻數(shù),根據(jù)圖中的信息,回答下列問題:

(1)求頻率分布直方圖中未畫出的小矩形的面積之和;

(2)求成績(jī)處于內(nèi)與內(nèi)的頻率之差;

(3)用分層抽樣的方法從成績(jī)不低于120分的學(xué)生中選取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任選2人,求這2人中恰有一人成績(jī)低于130分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行六面體ABCD—A1B1C1D1中,AB=AC,平面BB1C1C⊥底面ABCD,點(diǎn)M、F分別是線段AA1、BC的中點(diǎn).

(1)求證:AF⊥DD1

(2)求證:AF∥平面MBC1

查看答案和解析>>

同步練習(xí)冊(cè)答案