12.已知f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時,f(x)=2018x+log2018x,則函數(shù)f(x)的零點個數(shù)是( 。
A.1B.2C.3D.4

分析 結(jié)合函數(shù)的圖象,奇函數(shù)的性質(zhì),判斷函數(shù)f(x)的零點個數(shù).

解答 解:作出函數(shù)y=2 018x和y=-log2018x的圖象如圖所示,
可知函數(shù)f(x)=2 018x+log2018x在x∈(0,+∞)上存在一個零點,
又f(x)是定義在R上的奇函數(shù),所以f(x)在x∈(-∞,0)上只有一個零點,又f(0)=0,
所以函數(shù)f(x)的零點個數(shù)是3,
故選:C.

點評 本題主要考查函數(shù)的圖象,函數(shù)的奇偶性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)=|x|(ax+2),當(dāng)1≤x≤2時,有f(x+a)<f(x),則實數(shù)a的取值范圍是($\sqrt{2}$-2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.sin 15° sin 30° sin 75° 的值等于( 。
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{1}{16}$D.-$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}的通項為an=(-1)n(4n-3),則數(shù)列{an}的前50項和T50=(  )
A.98B.99C.100D.101

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,內(nèi)角A、B、C所對應(yīng)的邊分別為a、b、c,若bsinA-$\sqrt{3}$acosB=0,則A+C=120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在長方體ABCD-A1B1C1D1中,AB=AA1=1,E為BC中點.
(1)求證:C1D⊥D1E;
(2)若二面角B1-AE-D1的大小為90°,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列曲線中,在x=1處切線的傾斜角為$\frac{3π}{4}$的是(  )
A.y=x2-$\frac{3}{x}$B.y=xlnxC.y=x3-2x2D.y=ex-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)y=Asin(ωx+ϕ)(A>0,ω>0,|φ|<$\frac{π}{2}$),在同一周期內(nèi),$x=\frac{π}{9}$時取得最大值$\frac{1}{2}$,$x=\frac{4}{9}π$時取得最小值-$\frac{1}{2}$,則該函數(shù)解析式為(  )
A.$y=2sin(\frac{x}{3}-\frac{π}{6})$B.$y=\frac{1}{2}sin(3x+\frac{π}{6})$C.$y=\frac{1}{2}sin(3x-\frac{π}{6})$D.$y=\frac{1}{2}sin(\frac{x}{3}-\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.運行如圖所示程序,若輸出的實數(shù)x∈[15,17],則輸入的實數(shù)x的取值范圍是(  )
A.$[3,\frac{7}{2}]$B.$[1,\frac{5}{4}]$C.[63,71]D.[127,143]

查看答案和解析>>

同步練習(xí)冊答案