【題目】已知函數(shù),,
(1)求不等式的解集;
(2)若對一切,均有成立,求實數(shù)的取值范圍.
【答案】(1){x|-2<x<4}.(2)(-∞,2].
【解析】
(1)解一元二次不等式得不等式g(x)<0的解集,(2)先化簡不等式,利用變量分離法得,轉(zhuǎn)化求函數(shù)最小值,根據(jù),利用基本不等式求最值,即得實數(shù)m的取值范圍.
解:(1)g(x)=2x2-4x-16<0,
∴(2x+4)(x-4)<0,∴-2<x<4,
∴不等式g(x)<0的解集為{x|-2<x<4}.
(2)∵f(x)=x2-2x-8.
當x>2時,f(x)≥(m+2)x-m-15恒成立,
∴x2-2x-8≥(m+2)x-m-15,
即x2-4x+7≥m(x-1).
∴對一切x>2,均有不等式成立.
而=(x-1)+-2
≥2-2=2(當x=3時等號成立).
∴實數(shù)m的取值范圍是(-∞,2].
科目:高中數(shù)學 來源: 題型:
【題目】已知在三角形ABC中,AB<AC,∠BAC=90°,邊AB,AC的長分別為方程 的兩個實數(shù)根,若斜邊BC上有異于端點的E,F(xiàn)兩點,且EF=1,∠EAF=θ,則tanθ的取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+2|+|x+a|(a∈R).
(Ⅰ)若a=5,求函數(shù)f(x)的最小值,并寫出此時x的取值集合;
(Ⅱ)若f(x)≥3恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解甲、乙兩名同學的數(shù)學學習情況,對他們的次數(shù)學測試成績(滿分分)進行統(tǒng)計,作出如下的莖葉圖,其中處的數(shù)字模糊不清,已知甲同學成績的中位數(shù)是,乙同學成績的平均分是分.
(1)求和的值;
(2)現(xiàn)從成績在之間的試卷中隨機抽取兩份進行分析,求恰抽到一份甲同學試卷的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|3≤≤27},B={x|>1}.
(1)分別求A∩B,()∪A;
(2)已知集合C={x|1<x<a},若CA,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為 ,且過點M(4,1). (Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=x+m(m≠﹣3)與橢圓C交于P,Q兩點,記直線MP,MQ的斜率分別為k1 , k2 , 試探究k1+k2是否為定值.若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足:對任意實數(shù)x,都有f(x)≥x,且當x∈(1,3)時,有f(x)≤ (x+2)2成立.
(1)證明:f(2)=2;
(2)若f(-2)=0,求f(x)的表達式;
(3)設g(x)=f(x)-x,x∈[0,+∞),若g(x)圖象上的點都位于直線y=的上方,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“過大年,吃水餃”是我國不少地方過春節(jié)的一大習俗.2018年春節(jié)前夕,A市某質(zhì)檢部門隨機抽取了100包某種品牌的速凍水餃作樣本,檢測其某項質(zhì)量指標,檢測結(jié)果如頻率分布直方圖所示.
(1)求所抽取的100包速凍水餃該項質(zhì)量指標值的樣本平均數(shù)和方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)若該品牌的速凍水餃的某項質(zhì)量指標Z服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
①求Z落在內(nèi)的概率;
② 若某人從某超市購買了1包這種品牌的速凍水餃,發(fā)現(xiàn)該包速凍水餃某項質(zhì)量指標值為55,根據(jù)原則判斷該包速凍水餃某項質(zhì)量指標值是否正常
附:①;
②若,則,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com