【題目】已知函數(shù)f(x)=|x+2|+|x+a|(a∈R).
(Ⅰ)若a=5,求函數(shù)f(x)的最小值,并寫出此時x的取值集合;
(Ⅱ)若f(x)≥3恒成立,求a的取值范圍.

【答案】解:(Ⅰ)若a=5,f(x)=|x+2|+|x+5|=
其圖象如圖:

∴f(x)的最小值為3,使f(x)取得最小值的x的集合為{x|﹣5≤x≤﹣2};
(Ⅱ)f(x)=|x+2|+|x+a|=|x﹣(﹣2)|+|x﹣(﹣a)|,
由絕對值的幾何意義可知,f(x)為數(shù)軸上動點x與兩個定點﹣2、﹣a的距離的和,
如圖:

當動點x與﹣2重合時,|x﹣(﹣2)|最小為0,要使f(x)≥3恒成立,
則|﹣2﹣(﹣a)|≥3,即|a﹣2|≥3,得a﹣2≤﹣3或a﹣2≥3,
∴a≤﹣1或a≥5
【解析】(Ⅰ)寫出分段函數(shù),畫圖得答案;(Ⅱ)由絕對值的幾何意義,把f(x)≥3恒成立轉化為關于a的含有絕對值的不等式求解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】隨著網(wǎng)絡營銷和電子商務的興起,人們的購物方式更具多樣化,某調查機構隨機抽取10名購物者進行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實體店.

1)若從10名購物者中隨機抽取2名,其中男、女各一名,求至少1名傾向于選擇實體店的概率;

(2)若從這10名購物者中隨機抽取3名,設X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】德國著名數(shù)學家狄利克雷在數(shù)學領域成就顯著,以其名命名的函數(shù)f(x)= ,稱為狄利克雷函數(shù),則關于函數(shù)f(x)有以下四個命題: ①f(f(x))=1;
②函數(shù)f(x)是偶函數(shù);
③任意一個非零有理數(shù)T,f(x+T)=f(x)對任意x∈R恒成立;
④存在三個點A(x1 , f(x1)),B(x2 , f(x2)),C(x3 , f(x3)),使得△ABC為等邊三角形.
其中真命題的個數(shù)是(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|x﹣4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax對任意的實數(shù)x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知邊長為2的菱形ABCD中,∠BCD=60°,E為DC的中點,如圖1所示,將△BCE沿BE折起到△BPE的位置,且平面BPE⊥平面ABED,如圖2所示.
(Ⅰ)求證:△PAB為直角三角形;
(Ⅱ)求二面角A﹣PD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩焦點為,離心率.

(1)求此橢圓的方程;

2)設直線,若與此橢圓相交于兩點,且等于橢圓的短軸長,求的值;

3)以此橢圓的上頂點為直角頂點作橢圓的內接等腰直角三角形,這樣的直角三角形是否存在?若存在,請說明有幾個;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)求不等式的解集;

(2)若對一切,均有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|﹣|x+2|. (Ⅰ)求不等式﹣2<f(x)<0的解集A;
(Ⅱ)若m,n∈A,證明:|1﹣4mn|>2|m﹣n|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x+a|﹣x﹣2. (Ⅰ)當a=1時,求不等式f(x)>0的解集;
(Ⅱ)設a>﹣1,且存在x0∈[﹣a,1),使得f(x0)≤0,求a的取值范圍.

查看答案和解析>>

同步練習冊答案