12.執(zhí)行如圖所示的流程圖,會(huì)輸出一列數(shù),則這列數(shù)中的第3個(gè)數(shù)是30.

分析 模擬執(zhí)行程序,依次寫(xiě)出每次循環(huán)得到的A,N的值,即可得解輸出一列數(shù)中的第3個(gè)數(shù).

解答 解:模擬執(zhí)行程序,可得
A=3,N=1,輸出3,N=2,
滿(mǎn)足條件N≤4,A=6,輸出6,N=3,
滿(mǎn)足條件N≤4,A=30,輸出30,N=4,
滿(mǎn)足條件N≤4,A=870,輸出870,N=5,
不滿(mǎn)足條件N≤4,結(jié)束.
則這列數(shù)中的第3個(gè)數(shù)是30.
故答案為:30.

點(diǎn)評(píng) 本題考查了循環(huán)結(jié)構(gòu)中的直到型循環(huán)的應(yīng)用,直到型循環(huán)是先執(zhí)行循環(huán)體后判斷,算法結(jié)束,本題屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如果復(fù)數(shù)$\frac{2+bi}{1+2i}$(其中i為虛數(shù)單位,b為實(shí)數(shù))的實(shí)部和虛部互為相反數(shù),那么b等于( 。
A.$\sqrt{2}$B.$\frac{2}{3}$C.$-\frac{2}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=(sinx+cosx)cosx,則f(-$\frac{π}{24}$)=$\frac{{2+\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.《九章算術(shù)》商功章有題:一圓柱形谷倉(cāng),高1丈3尺,容納米2000斛(1丈=10尺,斛為容積單位,1斛≈1.62立方尺,π≈3),則圓柱底面周長(zhǎng)約為( 。
A.1丈3尺B.5丈4尺C.9丈2尺D.48丈6尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,角A,B,C的對(duì)邊分別為a、b、c,已知sinB=$\frac{5}{13}$,且$\overrightarrow{BA}$•$\overrightarrow{BC}$=12.
(1)求△ABC的面積;
(2)若a,b,c成等差數(shù)列,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知集合A={0,2a},B={a,b},且A∩B={3},則b的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,且當(dāng)n≥2時(shí),2(Sn-Sn-1)=(n+1)($\frac{1}{S_1}$+$\frac{1}{S_2}$+…+$\frac{1}{S_n}$).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:當(dāng)n≥2時(shí),4anan≤${a_{n+2}}^{{a_{n+2}}-2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)a∈[1,4],b∈[1,4],現(xiàn)隨機(jī)地抽出一對(duì)有序?qū)崝?shù)對(duì)(a,b)使得函數(shù)f(x)=4x2+a2與函數(shù)g(x)=-4$\sqrt$x的圖象有交點(diǎn)的概率為( 。
A.$\frac{5}{27}$B.$\frac{5}{16}$C.$\frac{5}{54}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若實(shí)數(shù)x,y滿(mǎn)足條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y≤0}\\{y≤3}\end{array}\right.$,則z=4x-3y的最大值是3.

查看答案和解析>>

同步練習(xí)冊(cè)答案