分析 先根據(jù)二倍角公式和兩角和的正弦公式f(x)=$\frac{1}{2}$+$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$),再代值計(jì)算即可.
解答 解:f(x)=(sinx+cosx)cosx=sinxcosx+cos2x=$\frac{1}{2}$sin2x+$\frac{1}{2}$(1+cos2x)=$\frac{1}{2}$+$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$),
∴f(-$\frac{π}{24}$)=$\frac{1}{2}$+$\frac{\sqrt{2}}{2}$sin(2×$(-\frac{π}{24})$+$\frac{π}{4}$)=$\frac{1}{2}$+$\frac{\sqrt{2}}{2}$×$\frac{1}{2}$=$\frac{2+\sqrt{2}}{4}$
故答案為:$\frac{{2+\sqrt{2}}}{4}$
點(diǎn)評(píng) 本題考查了二倍角公式和兩角和的正弦公式,以及函數(shù)值,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | -$\frac{4}{3}$ | D. | -$\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x∈R,2x≠3 | B. | ?x>0,2x≠3 | C. | ?x≤0,2x=3 | D. | ?x≤0,2x≠3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com