分析 (1)以C為坐標原點,分別以CB,CA,CC1為x,y,z軸,建立空間直角坐標系.設AB=2,分別求出C1,B,A,D,A1,C,$\overrightarrow{CD}$,$\overrightarrow{C{A}_{1}}$的坐標,設平面A1CD的法向量為$\overrightarrow{m}$=(x,y,z),運用向量垂直條件:數(shù)量積為0,取x=2,求出法向量,即可得證;
(2)求出B1,D,A1,由題意可得E,$\overrightarrow{DE}$,$\overrightarrow{CE}$,$\overrightarrow{{A}_{1}E}$,的坐標,分別設平面A1DE的法向量為$\overrightarrow{n}$=(x1,y1,z1),平面A1CE的法向量為$\overrightarrow{k}$=(x2,y2,z2),運用向量垂直條件:數(shù)量積為0,可得法向量,再由向量夾角公式,即可得到所求平面角.
解答 解:(1)證明:以C為坐標原點,分別以CB,CA,CC1為x,y,z軸,建立空間直角坐標系.
設AB=2,AA1=AC=CB=$\sqrt{2}$,可得C1(0,0,$\sqrt{2}$),B($\sqrt{2}$,0,0),A(0,$\sqrt{2}$,0),
D($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,0),A1(0,$\sqrt{2}$,$\sqrt{2}$),C(0,0,0),
$\overrightarrow{CD}$=($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,0),$\overrightarrow{C{A}_{1}}$=(0,$\sqrt{2}$,$\sqrt{2}$),
設平面A1CD的法向量為$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{CD}=0}\\{\overrightarrow{m}•\overrightarrow{C{A}_{1}}=0}\end{array}\right.$即$\left\{\begin{array}{l}{\frac{\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y=0}\\{\sqrt{2}y+\sqrt{2}z=0}\end{array}\right.$,
取x=2,則$\overrightarrow{m}$=(2,-2,2),
又$\overrightarrow{B{C}_{1}}$=(-$\sqrt{2}$,0,$\sqrt{2}$),
$\overrightarrow{B{C}_{1}}$•$\overrightarrow{m}$=-2$\sqrt{2}$+0+2$\sqrt{2}$=0,
即有$\overrightarrow{B{C}_{1}}$⊥$\overrightarrow{m}$,
則BC1∥平面A1CD;
(2)B1($\sqrt{2}$,0,$\sqrt{2}$),D($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,0),A1(0,$\sqrt{2}$,$\sqrt{2}$),
由題意可得E($\sqrt{2}$,0,$\frac{\sqrt{2}}{2}$),
$\overrightarrow{DE}$=($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),$\overrightarrow{CE}$=($\sqrt{2}$,0,$\frac{\sqrt{2}}{2}$),
$\overrightarrow{{A}_{1}E}$=($\sqrt{2}$,-$\sqrt{2}$,-$\frac{\sqrt{2}}{2}$),
設平面A1DE的法向量為$\overrightarrow{n}$=(x1,y1,z1),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DE}=0}\\{\overrightarrow{n}•\overrightarrow{{A}_{1}E}=0}\end{array}\right.$即$\left\{\begin{array}{l}{\frac{\sqrt{2}}{2}{x}_{1}-\frac{\sqrt{2}}{2}{y}_{1}+\frac{\sqrt{2}}{2}{z}_{1}=0}\\{\sqrt{2}{x}_{1}-\sqrt{2}{y}_{1}-\frac{\sqrt{2}}{2}{z}_{1}=0}\end{array}\right.$,
取y1=1,則$\overrightarrow{n}$=(1,1,0),
設平面A1CE的法向量為$\overrightarrow{k}$=(x2,y2,z2),
則$\left\{\begin{array}{l}{\overrightarrow{k}•\overrightarrow{CE}=0}\\{\overrightarrow{k}•\overrightarrow{{A}_{1}E}=0}\end{array}\right.$即$\left\{\begin{array}{l}{\sqrt{2}{x}_{2}+\frac{\sqrt{2}}{2}{z}_{2}=0}\\{\sqrt{2}{x}_{2}-\sqrt{2}{y}_{2}-\frac{\sqrt{2}}{2}{z}_{2}=0}\end{array}\right.$,
取z2=2,則$\overrightarrow{k}$=(-1,-2,2),
則cos<$\overrightarrow{n}$,$\overrightarrow{k}$>=$\frac{\overrightarrow{n}•\overrightarrow{k}}{|\overrightarrow{n}|•|\overrightarrow{k}|}$=$\frac{-1-2+0}{\sqrt{2}•\sqrt{1+4+4}}$=-$\frac{\sqrt{2}}{2}$,
由<$\overrightarrow{n}$,$\overrightarrow{k}$>∈[0,π],可得<$\overrightarrow{n}$,$\overrightarrow{k}$>=$\frac{3π}{4}$.
則二面角D-A1E-C的平面角為$\frac{π}{4}$.
點評 本題考查線面平行的證明和二面角平面角的求法,注意運用向量法,運用向量數(shù)量積和夾角公式,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (8,9) | B. | (8,9] | C. | (12,32) | D. | [12,32) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,0) | B. | (-∞,-1)∪(0,1) | C. | (-1,1) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com