10.不共線的非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow$|=|-2$\overrightarrow{a}$|,則向量2$\overrightarrow{a}$+$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

分析 利用平面向量的數(shù)量積為0,可求出兩向量的夾角為$\frac{π}{2}$.

解答 解:∵|$\overrightarrow$|=|-2$\overrightarrow{a}$|=2|$\overrightarrow{a}$|,
∴(2$\overrightarrow{a}$+$\overrightarrow$)•(2$\overrightarrow{a}$-$\overrightarrow$)=4${\overrightarrow{a}}^{2}$-${\overrightarrow}^{2}$=4${|\overrightarrow{a}|}^{2}$-4${|\overrightarrow{a}|}^{2}$=0,
∴向量2$\overrightarrow{a}$+$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$的夾角為$\frac{π}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查了平面向量量積公式,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)$B(0,\sqrt{3})$為短軸的一個(gè)端點(diǎn),∠OF2B=60°.
(1)求橢圓E的方程;
(2)若點(diǎn)A,B分別是橢圓E的左、右頂點(diǎn),直線l經(jīng)過點(diǎn)B且垂直于x軸,點(diǎn)P是橢圓上異于A,B的任意一點(diǎn),直線AP交l于點(diǎn)M.設(shè)過點(diǎn)M垂直于PB的直線為m.求證:直線m過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.計(jì)算$\int_0^4{|{x-2}|dx}$的值為(  )
A.2B.4C.6D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=sin(ωx+φ)-$\sqrt{3}$cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)圖象的相鄰兩條對(duì)稱軸為直線x=0與x=$\frac{π}{2}$,則f(x)的最小正周期為π,φ=-$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在一次抽獎(jiǎng)活動(dòng)中,8張獎(jiǎng)券中有一、二、三等獎(jiǎng)各1張,其余5張無(wú)獎(jiǎng).甲、乙、丙、丁四名顧客每人從中抽取2張,則不同的獲獎(jiǎng)情況有( 。
A.24種B.36種C.60種D.96種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知 f(x)=$\frac{a-{2}^{x}}{1+{2}^{x}}$(a∈R)是奇函數(shù),且實(shí)數(shù)k滿足f(2k-1)<$\frac{1}{3}$,則k的取值范圍是(  )
A.(0,+∞)B.(-∞,0)C.(-∞,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知sin(α+$\frac{π}{3}$)+sinα=-$\frac{4\sqrt{3}}{5}$.-$\frac{π}{2}$<α<0,則sin(-α+$\frac{5π}{6}$)等于( 。
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB=$\frac{{\sqrt{2}}}{2}$AB.
(1)求證:BC1∥平面A1CD;
(2)求銳角二面角D-A1E-C的平面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=ln x-$\frac{a}{x}$,e為自然對(duì)數(shù)的底數(shù).
(1)若a>0,試判斷f(x)的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為$\frac{3}{2}$,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案