分析 問(wèn)題轉(zhuǎn)化為f(x1)min>g(x2)min成立,根據(jù)函數(shù)的單調(diào)性分別求出函數(shù)g(x)的最小值和f(x)的最小值,得到關(guān)于b的不等式,解出即可.
解答 解:f(x)=(x2-x+1)ex,
f′(x)=(x2+x)ex,
令f′(x)>0,解得:x>0或x<-1,
令f′(x)<0,解得:-1<x<0,
故f(x)在(-∞,-1)遞增,在(-1,0)遞減,在(0,+∞)遞增,
故x→-∞時(shí),f(x)→0,
若對(duì)任意x1∈R,存在x2∈[1,3],使f(x1)>g(x2)成立,
只需g(x)min≤0在[1,3]成立,
g(x)的對(duì)稱(chēng)軸是x=$\frac{2}$,
$\frac{2}$≤1時(shí),g(x)在[1,3]遞增,g(x)min=g(1)=10-b≤0,無(wú)解,
1<$\frac{2}$<3時(shí),g(x)min=g($\frac{2}$)=$\frac{^{2}}{4}$-$\frac{^{2}}{2}$+9≤0,無(wú)解,
$\frac{2}$≥3時(shí),g(x)min=g(3)=18-3b≤0,解得:b≥6,
故答案為:[6,+∞).
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,考查分類(lèi)討論思想,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({0,\frac{{\sqrt{5}}}{5}})$ | B. | $({0,\frac{{2\sqrt{5}}}{5}})$ | C. | $({0,\frac{{3\sqrt{5}}}{5}})$ | D. | $({0,\frac{{6\sqrt{5}}}{5}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0,2,3,6} | B. | { 0,3,6} | C. | {2,1,5,8} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$ | B. | 若|$\overrightarrow{a}$|=1,則$\overrightarrow{a}$=1 | C. | 若|$\overrightarrow{a}$|>|$\overrightarrow$|,則$\overrightarrow{a}$>$\overrightarrow$ | D. | 若$\overrightarrow{a}$=$\overrightarrow$,$\overrightarrow{a}$∥$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{a}$<$\frac{1}$ | B. | log2a>log2b | C. | a2+b2≤2a+2b-2 | D. | b<$\sqrt{ab}$<$\frac{a+b}{2}$<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com