【題目】設(shè)橢圓 ()的一個(gè)焦點(diǎn)點(diǎn)為橢圓內(nèi)一點(diǎn),若橢圓上存在一點(diǎn),使得,則橢圓的離心率的取值范圍是( )
A. B. C. D.
【答案】A
【解析】
記橢圓的左焦點(diǎn)為,則 ,即, , ,即,即 ,橢圓的離心率的取值范圍是,故選A.
【方法點(diǎn)晴】本題主要考查利用橢圓定與性質(zhì)求橢圓的離心率,屬于難題.求解與雙曲線性質(zhì)有關(guān)的問(wèn)題時(shí)要結(jié)合圖形進(jìn)行分析,既使不畫(huà)出圖形,思考時(shí)也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、實(shí)軸、虛軸、漸近線等雙曲線的基本量時(shí),要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率范圍問(wèn)題應(yīng)先將 用有關(guān)的一些量表示出來(lái),再利用其中的一些關(guān)系構(gòu)造出關(guān)于的不等式,從而求出的范圍.本題是利用橢圓的定義以及三角形兩邊與第三邊的關(guān)系構(gòu)造出關(guān)于的不等式,最后解出的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高二奧賽班N名學(xué)生的物理測(cè)評(píng)成績(jī)(滿分120分)分布直方圖如下,已知分?jǐn)?shù)在100~110的學(xué)生數(shù)有21人。
(Ⅰ)求總?cè)藬?shù)N和分?jǐn)?shù)在110~115分的人數(shù)n;
(Ⅱ)現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110~115分的n名學(xué)生(女生占)中任選2人,求其中恰好含有一名女生的概率;
(Ⅲ)為了分析某個(gè)學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一階段的學(xué)習(xí)提供指導(dǎo)性建議,對(duì)他前7次考試的數(shù)學(xué)成績(jī)x(滿分150分),物理成績(jī)y進(jìn)行分析,下面是該生7次考試的成績(jī)。
數(shù)學(xué) | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
已知該生的物理成績(jī)y與數(shù)學(xué)成績(jī)x是線性相關(guān)的,若該生的數(shù)學(xué)成績(jī)達(dá)到130分,請(qǐng)你估計(jì)他的物理成績(jī)大約是多少?
附:對(duì)于一組數(shù)據(jù)其回歸線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某建筑公司打算在一處工地修建一座簡(jiǎn)易儲(chǔ)物間.該儲(chǔ)物間室內(nèi)地面呈矩形形狀,面積為,并且一面緊靠工地現(xiàn)有圍墻,另三面用高度一定的矩形彩鋼板圍成,頂部用防雨布遮蓋,其平面圖如圖所示.已知該型號(hào)彩鋼板價(jià)格為100元/米,整理地面及防雨布總費(fèi)用為500元,不受地形限制,不考慮彩鋼板的厚度,記與墻面平行的彩鋼板的長(zhǎng)度為米.
(1)用表示修建儲(chǔ)物間的總造價(jià)(單位:元);
(2)如何設(shè)計(jì)該儲(chǔ)物間,可使總造價(jià)最低?最低總造價(jià)為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·全國(guó)Ⅱ卷)如圖,四棱錐P-ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中點(diǎn).
(1)證明:直線CE∥平面PAB;
(2)點(diǎn)M在棱PC上,且直線BM與底面ABCD所成角為45°,求二面角M-AB-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的五面體中,四邊形為菱形,且為中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)若平面平面,求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)與函數(shù)g(x)的圖像關(guān)于原點(diǎn)對(duì)稱(chēng),且f(x)= +2x, 若函數(shù)F(x)=g(x)-f(x)+1在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與圓C:相交,截得的弦長(zhǎng)為.
(1)求圓C的方程;
(2)過(guò)原點(diǎn)O作圓C的兩條切線,與函數(shù)的圖象相交于M、N兩點(diǎn)(異于原點(diǎn)),證明:直線與圓C相切;
(3)若函數(shù)圖象上任意三個(gè)不同的點(diǎn)P、Q、R,且滿足直線和都與圓C相切,判斷線與圓C的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線為.
()若直線的斜率為,求函數(shù)的單調(diào)區(qū)間.
()若函數(shù)是區(qū)間上的單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個(gè)圖形包含個(gè)小正方形.
(1)求出,,,并猜測(cè)的表達(dá)式;
(2)求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com