【題目】設(shè)命題p:函數(shù)f(x)=lg(ax2﹣x+ a)定義域?yàn)镽;命題q:不等式3x﹣9x<a對(duì)任意x∈R恒成立.
(1)如果p是真命題,求實(shí)數(shù)a的取值范圍;
(2)如果命題“p或q”為真命題且“p且q”為假命題,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:由題意ax2﹣x+ a>0 對(duì)任意x∈R恒成立,

當(dāng)a=0時(shí),不符題意,舍去;

當(dāng)a≠0時(shí),則 a>2,

所以實(shí)數(shù)a的取值范圍是a>2


(2)解:設(shè)t=3x(t>0),g(t)=﹣t2+t=﹣ + ,

g(t)max= ,

當(dāng)q為真命題時(shí),有a> ,

∵命題“p或q”為真命題且“p且q”為假命題,

∴p與q一個(gè)為真,一個(gè)為假,

當(dāng)p真q假,則 ,無(wú)解,

當(dāng)p假q真,則 <a≤2,

綜上,實(shí)數(shù)a的取值范圍是: <a≤2


【解析】(1)通過(guò)討論a的范圍,得到不等式組,解出即可;(2)分別求出p,q真時(shí)的a的范圍,再根據(jù)p真q假或p假q真得到不等式組,解出即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解復(fù)合命題的真假的相關(guān)知識(shí),掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè).

(1)令,求的單調(diào)區(qū)間;

(2)已知處取得極大值.求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),函數(shù)

(1)當(dāng)時(shí),解關(guān)于的不等式:

(2)若,已知函數(shù)有兩個(gè)零點(diǎn),若點(diǎn), ,其中是坐標(biāo)原點(diǎn),證明: 不可能垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)際油價(jià)在某一時(shí)間內(nèi)呈現(xiàn)出正弦波動(dòng)規(guī)律:P=Asin(ωπt+ )+60(美元)[t(天),A>0,ω>0],現(xiàn)采集到下列信息:最高油價(jià)80美元,當(dāng)t=150(天)時(shí)達(dá)到最低油價(jià),則ω=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)l為曲線C:y= 在點(diǎn)(1,0)處的切線.
(Ⅰ)求l的方程;
(Ⅱ)證明:除切點(diǎn)(1,0)之外,曲線C在直線l的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)長(zhǎng)期觀測(cè)得到:在交通繁忙的時(shí)段內(nèi),某公路汽車的車流量y(千輛/h)與汽車的平均速度v(km/h)之間的函數(shù)關(guān)系式為 . (I)若要求在該段時(shí)間內(nèi)車流量超過(guò)2千輛/h,則汽車在平均速度應(yīng)在什么范圍內(nèi)?
(II)在該時(shí)段內(nèi),當(dāng)汽車的平均速度v為多少時(shí),車流量最大?最大車流量為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若存在,且,使得,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四組函數(shù),表示同一函數(shù)的是(
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)=lnx2 , g(x)=2lnx
D.f(x)=logaax(a>0,a≠1),g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四組函數(shù),表示同一函數(shù)的是(
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)=lnx2 , g(x)=2lnx
D.f(x)=logaax(a>0,a≠1),g(x)=

查看答案和解析>>

同步練習(xí)冊(cè)答案