【題目】已知函數(shù)

(1)當(dāng)時(shí),求處的切線方程;

(2)設(shè)函數(shù),函數(shù)有且僅有一個(gè)零點(diǎn).

(i)求的值;

(ii)若時(shí), 恒成立,求的取值范圍.

【答案】1 2)(a=1

【解析】試題分析:(1)當(dāng)a=﹣1時(shí),函數(shù)f(x)=(x2﹣2x)lnx+ax2+2=(x2﹣2x)lnx﹣x2+2,求出f′(x),則k=f′(1),代入直線方程的點(diǎn)斜式可得切線的方程.

2令g(x)=f(x)﹣x﹣2=0,則(x22xlnx+ax2+2=x+2,即,構(gòu)造函數(shù)h(x)=,確定h(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,可得h(x)max=h(1)=1,即可求a的值;

當(dāng)a=1時(shí),g(x)=(x22xlnx+x2﹣x,若,gxm,只需g(x)min≥m

試題解析:

1)當(dāng)時(shí), ,

,又

處的切線方程.

2)(。┝,則

, 則.

,

,上是減函數(shù) ,

當(dāng)時(shí), ,當(dāng)時(shí), ,

上單調(diào)遞增,在上單調(diào)遞減,

,當(dāng)函數(shù)有且只有一個(gè)零點(diǎn)時(shí), .

(ⅱ)當(dāng), ,若時(shí), 恒成立,

只需 .

, 函數(shù)上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.

,

,即.

, .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本.用系統(tǒng)抽樣法,將全體職工隨機(jī)按1~200編號(hào),并按編號(hào)順序平均分為40組(1~5號(hào),6~10號(hào),…,196~200號(hào)).若第5組抽出的號(hào)碼為22,則第8組抽出的號(hào)碼應(yīng)是________.若用分層抽樣法,則40歲的以下的年齡段應(yīng)抽取__________人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),將曲線上各點(diǎn)的橫坐標(biāo)都縮短為原來(lái)的倍,縱坐標(biāo)坐標(biāo)都伸長(zhǎng)為原來(lái)的倍,得到曲線,在極坐標(biāo)系(與直角坐標(biāo)系取相同的單位長(zhǎng)度,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的極坐標(biāo)方程為

(1)求直線和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系有相同的長(zhǎng)度單位,曲線的極坐標(biāo)方程為

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)曲線與直線交于、兩點(diǎn),且點(diǎn)的坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是( )

A. 設(shè)隨機(jī)變量,則

B. 線性回歸直線不一定過(guò)樣本中心點(diǎn)

C. 若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1

D. 先把高三年級(jí)的2000名學(xué)生編號(hào):1到2000,再?gòu)木幪?hào)為1到50的50名學(xué)生中隨機(jī)抽取1名學(xué)生,其編號(hào)為,然后抽取編號(hào)為, , ,……的學(xué)生,這樣的抽樣方法是分層抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如下表:

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(2)若近幾年該農(nóng)產(chǎn)品每千克的價(jià)格 (單位:元)與年產(chǎn)量滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.

①根據(jù)(1)中所建立的回歸方程預(yù)測(cè)該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;

②當(dāng)為何值時(shí),銷售額最大?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為了了解顧客的購(gòu)物信息,隨機(jī)在商場(chǎng)收集了位顧客購(gòu)物的相關(guān)數(shù)據(jù)如下表:

一次購(gòu)物款(單位:元)

顧客人數(shù)

統(tǒng)計(jì)結(jié)果顯示位顧客中購(gòu)物款不低于元的顧客占,該商場(chǎng)每日大約有名顧客,為了增加商場(chǎng)銷售額度,對(duì)一次購(gòu)物不低于元的顧客發(fā)放紀(jì)念品.

(Ⅰ)試確定, 的值,并估計(jì)每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量;

(Ⅱ)現(xiàn)有人前去該商場(chǎng)購(gòu)物,求獲得紀(jì)念品的數(shù)量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家電公司根據(jù)銷售區(qū)域?qū)N售員分成兩組.2017年年初,公司根據(jù)銷售員的銷售業(yè)績(jī)分發(fā)年終獎(jiǎng),銷售員的銷售額(單位:十萬(wàn)元)在區(qū)間內(nèi)對(duì)應(yīng)的年終獎(jiǎng)分別為2萬(wàn)元,2.5萬(wàn)元,3萬(wàn)元,3.5萬(wàn)元.已知200名銷售員的年銷售額都在區(qū)間內(nèi),將這些數(shù)據(jù)分成4組: ,得到如下兩個(gè)頻率分布直方圖:

以上面數(shù)據(jù)的頻率作為概率,分別從組與組的銷售員中隨機(jī)選取1位,記分別表示 組與組被選取的銷售員獲得的年終獎(jiǎng).

(1)求的分布列及數(shù)學(xué)期;

(2)試問(wèn)組與組哪個(gè)組銷售員獲得的年終獎(jiǎng)的平均值更高?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018河南豫南九校高三下學(xué)期第一次聯(lián)考設(shè)函數(shù)

I)當(dāng)時(shí), 恒成立,求的范圍;

II)若處的切線為,且方程恰有兩解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案