【題目】2018河南豫南九校高三下學(xué)期第一次聯(lián)考設(shè)函數(shù)

I)當(dāng)時(shí), 恒成立,求的范圍;

II)若處的切線為,且方程恰有兩解,求實(shí)數(shù)的取值范圍.

【答案】I II

【解析】試題分析:(1)將參數(shù)值代入得到函數(shù)表達(dá)式,研究函數(shù)的單調(diào)性求得函數(shù)最值,使得最小值大于等于0即可;(2)根據(jù)切線得到 ,方程有兩解,可得,所以有兩解,令,研究這個(gè)函數(shù)的單調(diào)性和圖像,使得常函數(shù)y=m,和有兩個(gè)交點(diǎn)即可.

解析:

當(dāng)時(shí),得.

當(dāng)時(shí), ,且當(dāng)時(shí), ,此時(shí).

所以,即上單調(diào)遞増,

所以,

恒成立,得,所以.

(2)由

,且.

由題意得,所以.

在切線上.

所以.所以.

所以.

即方程有兩解,可得,所以.

,則,

當(dāng)時(shí), ,所以上是減函數(shù).

當(dāng)時(shí), ,所以上是減函數(shù).

所以.

又當(dāng)時(shí), ;且有.

數(shù)形結(jié)合易知: .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求處的切線方程;

(2)設(shè)函數(shù),函數(shù)有且僅有一個(gè)零點(diǎn).

(i)求的值;

(ii)若時(shí), 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018天一大聯(lián)考高中畢業(yè)班階段性測(cè)試(四)已知函數(shù),

I)若恒成立,求實(shí)數(shù)的取值范圍;

II)證明:對(duì)于任意正整數(shù),都有成立.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的最小值;

(Ⅱ)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著共享單車(chē)的成功運(yùn)營(yíng),更多的共享產(chǎn)品逐步走入大家的世界,共享汽車(chē)、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機(jī)抽取1000人對(duì)共享產(chǎn)品是否對(duì)日常生活有益進(jìn)行了問(wèn)卷調(diào)查,并對(duì)參與調(diào)查的1000人中的性別以及意見(jiàn)進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:

總計(jì)

認(rèn)為共享產(chǎn)品對(duì)生活有益

400

300

700

認(rèn)為共享產(chǎn)品對(duì)生活無(wú)益

100

200

300

總計(jì)

500

500

1000

(1)根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為共享產(chǎn)品的態(tài)度與性別有關(guān)系?

(2)為了答謝參與問(wèn)卷調(diào)查的人員,該公司對(duì)參與本次問(wèn)卷調(diào)查的人員隨機(jī)發(fā)放1張超市的購(gòu)物券,購(gòu)物券金額以及發(fā)放的概率如下:

購(gòu)物券金額

20元

50元

概率

現(xiàn)有甲、乙兩人領(lǐng)取了購(gòu)物券,記兩人領(lǐng)取的購(gòu)物券的總金額為,求的分布列和數(shù)學(xué)期望.

參考公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓系方程 (, ), 是橢圓的焦點(diǎn), 是橢圓上一點(diǎn),且.

(1)求的離心率并求出的方程;

2為橢圓上任意一點(diǎn),過(guò)且與橢圓相切的直線與橢圓交于, 兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為求證: 的面積為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱錐中,側(cè)面底面, 是等腰直角三角形的斜邊,且.

(1)求證: ;

(2)已知平面平面,平面平面, ,且到平面的距離相等,試確定直線及點(diǎn)的位置(說(shuō)明作法及理由),并求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形的邊長(zhǎng)為2,分別以, 為一邊在空間中作正三角形, ,延長(zhǎng)到點(diǎn),使,連接, .

(1)證明: 平面;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列的各項(xiàng)為正數(shù),且.

(1)求的通項(xiàng)公式;

(2)設(shè),求證數(shù)列的前項(xiàng)和<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案