分析 (1)觀察分析得到結(jié)論;
(2)利用分析法證明即可.
解答 解:(1)$\sqrt{10}-2\sqrt{2}>\sqrt{11}-3$
(2)$\sqrt{a+2}-\sqrt{a}>\sqrt{a+3}-\sqrt{a+1}$
證明:要證原不等式,只需證$\sqrt{a+2}+\sqrt{a+1}>\sqrt{a+3}+\sqrt{a}$
因為不等式兩邊都大于0
只需證$2a+3+2\sqrt{(a+2)(a+1)}>2a+3+2\sqrt{a(a+3)}$
只需證$\sqrt{{a^2}+3a+2}>\sqrt{{a^2}+3a}$
只需證a2+3a+2>a2+3a
只需證2>0
顯然成立
所以原不等式成立
點評 本題考查歸納推理,考查分析法的運(yùn)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{5π}{12}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$-2m | B. | 1-m | C. | 1-2m | D. | $\frac{1}{2}$-m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 66 | B. | 64 | C. | 62 | D. | 68 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2k+1}$ | B. | $\frac{1}{2k+1}$+$\frac{1}{2k+2}$ | C. | $\frac{1}{2k+1}$-$\frac{1}{k}$ | D. | $\frac{1}{2k+1}$+$\frac{1}{2k+2}$-$\frac{1}{k}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}-\frac{{\sqrt{3}}}{8}$ | B. | $\frac{π}{2}-\frac{{3\sqrt{3}}}{8}$ | C. | $\frac{3π}{2}-\frac{{\sqrt{3}}}{8}$ | D. | $\frac{3π}{2}-\frac{{3\sqrt{3}}}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com