【題目】已知實數(shù)a>0,b>0,函數(shù)f(x)=|x﹣a|﹣|x+b|的最大值為3.
(I) 求a+b的值;
(Ⅱ)設(shè)函數(shù)g(x)=﹣x2﹣ax﹣b,若對于x≥a均有g(shù)(x)<f(x),求a的取值范圍.
【答案】解:(Ⅰ)f(x)=|x﹣a|﹣|x+b|≤|x﹣a﹣x﹣b|=|a+b|=3,
∵a>0,b>0,∴a+b=3;
(Ⅱ)由(Ⅰ)得,0<a<3,0<b<3,
∴x≥a,x﹣a≥0,x+b>0,
此時,f(x)=x﹣a﹣x﹣b=﹣3,
若對于x≥a均有g(shù)(x)<f(x),
即x2+ax+b﹣3>0在[a,+∞)恒成立,
即x2+ax﹣a>0在[a,+∞)恒成立,
對稱軸x=﹣ <0,
故只需a2+a2﹣a>0即可,
解得:a> ,
故 <a<3.
【解析】(Ⅰ)根據(jù)絕對值的性質(zhì)求出f(x)的最大值是a+b,從而求出a+b的值即可;(Ⅱ)根據(jù)a,b的范圍,問題轉(zhuǎn)化為x2+ax﹣a>0在[a,+∞)恒成立,結(jié)合函數(shù)的單調(diào)性求出a的范圍即可.
【考點精析】掌握絕對值不等式的解法是解答本題的根本,需要知道含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},an≥0,a1=0,an+12+an+1﹣1=an2(n∈N).記Sn=a1+a2+…+an . Tn= + +…+ .求證:當(dāng)n∈N*時
(1)0≤an<an+1<1;
(2)Sn>n﹣2;
(3)Tn<3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為圓上的動點, 的坐標(biāo)為, 在線段上,滿足.
(Ⅰ)求的軌跡的方程.
(Ⅱ)過點的直線與交于兩點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)= .
(Ⅰ)記F(x)=f(x)﹣g(x),判斷F(x)在區(qū)間(1,2)內(nèi)零點個數(shù)并說明理由;
(Ⅱ)記(Ⅰ)中的F(x)在(1,2)內(nèi)的零點為x0 , m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有兩個不等實根x1 , x2(x1<x2),判斷x1+x2與2x0的大小,并給出對應(yīng)的證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程是ρ= ,以極點為原點,極軸為x軸正方向建立直角坐標(biāo)系,點M(﹣1,0),直線l與曲線C交于A、B兩點.
(Ⅰ)寫出直線l的極坐標(biāo)方程與曲線C的普通方程;
(Ⅱ)求線段MA、MB長度之積MAMB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了普及奧運(yùn)會知識和提高學(xué)生參加體育運(yùn)動的積極性,舉行了一次奧運(yùn)知識競賽.隨機(jī)抽取了30名學(xué)生的成績,繪成如圖所示的莖葉圖,若規(guī)定成績在75分以上(包括75分)的學(xué)生定義為甲組,成績在75分以下(不包括75分)定義為乙組.
(Ⅰ)在這30名學(xué)生中,甲組學(xué)生中有男生7人,乙組學(xué)生中有女生12人,試問有沒有90%的把握認(rèn)為成績分在甲組或乙組與性別有關(guān);
(Ⅱ)記甲組學(xué)生的成績分別為x1 , x2 , …,x12 , 執(zhí)行如圖所示的程序框圖,求輸出的S的值;
(Ⅲ)競賽中,學(xué)生小張、小李同時回答兩道題,小張答對每道題的概率均為 ,小李答對每道題的概率均為 ,兩人回答每道題正確與否相互獨立.記小張答對題的道數(shù)為a,小李答對題的道數(shù)為b,X=|a﹣b|,寫出X的概率分布列,并求出X的數(shù)學(xué)期望.
附:K2= ;其中n=a+b+c+d
獨立性檢驗臨界表:
P(K2>k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)a>0,b>0,函數(shù)f(x)=|x﹣a|﹣|x+b|的最大值為3.
(I) 求a+b的值;
(Ⅱ)設(shè)函數(shù)g(x)=﹣x2﹣ax﹣b,若對于x≥a均有g(shù)(x)<f(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中, 分別是棱的中點, 為棱上一點,且異面直線與所成角的余弦值為.
(1)證明: 為的中點;
(2)求平面與平面所成銳二面角的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,不妨令正方體的棱長為2,設(shè),利用,解得,即可證得;
(2)分別求得平面與平面的法向量,利用求解即可.
試題解析:
(1)證明:以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系.
不妨令正方體的棱長為2,
則, , , , ,
設(shè),則, ,
所以 ,
所以,解得(舍去),即為的中點.
(2)解:由(1)可得, ,
設(shè)是平面的法向量,
則.令,得.
易得平面的一個法向量為,
所以.
所以所求銳二面角的余弦值為.
點睛:空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.
【題型】解答題
【結(jié)束】
22
【題目】已知橢圓的短軸長為2,且橢圓過點.
(1)求橢圓的方程;
(2)設(shè)直線過定點,且斜率為,若橢圓上存在兩點關(guān)于直線對稱, 為坐標(biāo)原點,求的取值范圍及面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),是定義域為的奇函數(shù).
(1)確定的值;
(2)若,函數(shù),,求的最小值;
(3)若,是否存在正整數(shù),使得對恒成立?若存在,請求出所有的正整數(shù);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com