已知數(shù)列{an}的前n項和Sn=3n-2,則數(shù)列{an}的通項公式an=
 
考點:數(shù)列的求和,數(shù)列的函數(shù)特性
專題:等差數(shù)列與等比數(shù)列
分析:首先求出n=1時a1的值,然后求出n≥2時an的數(shù)列表達式,最后驗證a1是否滿足所求遞推式,于是即可求出{an}的通項公式.
解答: 解:數(shù)列{an}的前n項和Sn=3n-2,
當n=1時,a1=S1=1,
當n≥2時,an=Sn-Sn-1=3n-2-3n-1+2=2•3n-1,
當n=1時,a1=1不滿足此式,
故an=
1,n=1
2•3n-1,n≥2
點評:本題主要考查數(shù)列遞推式的知識點,解答本題的關(guān)鍵是利用an=Sn-Sn-1進行解答,此題比較基礎,較簡單.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某造紙廠擬建一座平面圖形為矩形且面積為162m2的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為40元/m,中間兩道隔墻建造單價為24.8元/m,池底建造單價為8元/m2,水池所有墻的厚度忽略不計.
(Ⅰ)試設計污水處理池的長和寬,使總造價最低,并求出最低總造價;
(Ⅱ)若由于地形限制,該池的寬不能超過5m,試設計污水池的長和寬,使總造價最低,并求出最低總造價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0),O為坐標原點,離心率e=2,點M(
5
3
)在雙曲線上.
(1)則雙曲線的方程為
 
;
(2)若直線l與雙曲線交于P,Q兩點,且
OP
OQ
=0.則
1
|OP|2
+
1
|OQ|2
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

口袋中裝著標有數(shù)字1,2,3,4的小球各2個,從口袋中任取3個小球,按3個小球上最大數(shù)字的8倍計分,每個小球被取出的可能性相等,用ξ表示取出的3個小球上的最大數(shù)字,求:
(I)取出的3個小球上的數(shù)字互不相同的概率;
(II)隨機變量ξ的概率分布和數(shù)學期望;
(III)計分介于17分到35分之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=3an+1,證明{a n +
1
2
}是等比數(shù)列,并求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下的x,f(x)對應值:
x123456
f(x)1210-24-5-10
函數(shù)f(x)在區(qū)間[1,6]上的零點至少有
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:“?x∈R,x2+2ax+a≤0”為假命題,則實數(shù)a的取值范圍是(  )
A、(0,1)
B、(0,2)
C、(2,3)
D、(2,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C的方程為
x2
a2
-
y2
b2
=1(a>0,b>0),它的左、右焦點分別F1,F(xiàn)2,左右頂點為A1,A2,過焦點F2先作其漸近線的垂線,垂足為P,再作與x軸垂直的直線與曲線C交于點Q,R,若|PF2|,|A1A2|,|QF1|依次成等差數(shù)列,則離心率e=( 。
A、
2
B、
5
C、
2
5
D、
5
+1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三角形兩邊之差為2,夾角的正弦值為
3
5
,面積為
9
2
,那么這個三角形的兩邊長分別是
 

查看答案和解析>>

同步練習冊答案