【題目】隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調(diào)查機構(gòu)進行了有關(guān)網(wǎng)購的調(diào)查問卷,并從參與調(diào)查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)
經(jīng)常網(wǎng)購 | 偶爾或不用網(wǎng)購 | 合計 | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合計 |
(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網(wǎng)購與性別有關(guān)?
(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;
②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機抽取10人贈送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為,求隨機變量的數(shù)學(xué)期望和方差.
參考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(Ⅰ)詳見解析;(Ⅱ)①;②數(shù)學(xué)期望為6,方差為2.4.
【解析】
(1)完成列聯(lián)表,由列聯(lián)表,得,由此能在犯錯誤的概率不超過0.01的前提下認為我市市民網(wǎng)購與性別有關(guān).
(2)① 由題意所抽取的10名女市民中,經(jīng)常網(wǎng)購的有人,偶爾或不用網(wǎng)購的有人,由此能選取的3人中至少有2人經(jīng)常網(wǎng)購的概率.
② 由列聯(lián)表可知,抽到經(jīng)常網(wǎng)購的市民的頻率為:,由題意,由此能求出隨機變量的數(shù)學(xué)期望和方差.
解:(1)完成列聯(lián)表(單位:人):
經(jīng)常網(wǎng)購 | 偶爾或不用網(wǎng)購 | 合計 | |
男性 | 50 | 50 | 100 |
女性 | 70 | 30 | 100 |
合計 | 120 | 80 | 200 |
由列聯(lián)表,得:
,
∴能在犯錯誤的概率不超過0.01的前提下認為我市市民網(wǎng)購與性別有關(guān).
(2)①由題意所抽取的10名女市民中,經(jīng)常網(wǎng)購的有人,
偶爾或不用網(wǎng)購的有人,
∴選取的3人中至少有2人經(jīng)常網(wǎng)購的概率為:
.
② 由列聯(lián)表可知,抽到經(jīng)常網(wǎng)購的市民的頻率為:,
將頻率視為概率,
∴從我市市民中任意抽取一人,恰好抽到經(jīng)常網(wǎng)購市民的概率為0.6,
由題意,
∴隨機變量的數(shù)學(xué)期望,
方差D(X)=.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓與橢圓的離心率相同.
(1)求的值;
(2)過橢圓的左頂點作直線,交橢圓于另一點,交橢圓于兩點(點在之間).①求面積的最大值(為坐標(biāo)原點);②設(shè)的中點為,橢圓的右頂點為,直線與直線的交點為,試探究點是否在某一條定直線上運動,若是,求出該直線方程;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中嘗試進行課堂改革.現(xiàn)高一有兩個成績相當(dāng)?shù)陌嗉,其?/span>班級參與改革,班級沒有參與改革.經(jīng)過一段時間,對學(xué)生學(xué)習(xí)效果進行檢測,規(guī)定成績提高超過分的為進步明顯,得到如下列聯(lián)表.
進步明顯 | 進步不明顯 | 合計 | |
班級 | |||
班級 | |||
合計 |
(1)是否有的把握認為成績進步是否明顯與課堂是否改革有關(guān)?
(2)按照分層抽樣的方式從班中進步明顯的學(xué)生中抽取人做進一步調(diào)查,然后從人中抽人進行座談,求這人來自不同班級的概率.
附:,當(dāng)時,有的把握說事件與有關(guān).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)的性質(zhì)描述,正確的是__________.①的定義域為;②的值域為;③的圖象關(guān)于原點對稱;④在定義域上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(為常數(shù),且).
(1)若當(dāng)時,函數(shù)與的圖象有且只要一個交點,試確定自然數(shù)的值,使得(參考數(shù)值,,,);
(2)當(dāng)時,證明:(其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)統(tǒng)計,某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對應(yīng)數(shù)據(jù)的散點圖,如圖所示.
(1)依據(jù)數(shù)據(jù)的散點圖可以看出,可用線性回歸模型擬合與的關(guān)系,請計算相關(guān)系數(shù)并加以說明(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);
(2)求關(guān)于的回歸方程,并預(yù)測液體肥料每畝使用量為12千克時,西紅柿畝產(chǎn)量的增加量約為多少?
附:相關(guān)系數(shù)公式,參考數(shù)據(jù):,.
回歸方程中斜率和截距的最小二乘估計公式分別為:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(Ⅰ)解不等式: ;
(Ⅱ)當(dāng)時,函數(shù)的圖象與軸圍成一個三角形,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),當(dāng)時, .
(1)直接寫出函數(shù)的增區(qū)間(不需要證明);
(2)求出函數(shù), 的解析式;
(3)若函數(shù), ,求函數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com