【題目】如圖,已知橢圓與橢圓的離心率相同.
(1)求的值;
(2)過橢圓的左頂點作直線,交橢圓于另一點,交橢圓于兩點(點在之間).①求面積的最大值(為坐標原點);②設的中點為,橢圓的右頂點為,直線與直線的交點為,試探究點是否在某一條定直線上運動,若是,求出該直線方程;若不是,請說明理由.
【答案】(1);(2)①;②點在定直線上
【解析】
(1)利用兩個橢圓離心率相同可構造出方程,解方程求得結果;(2)①當與軸重合時,可知不符合題意,則可設直線的方程:且;設,,聯(lián)立直線與橢圓方程可求得,則可將所求面積表示為:,利用換元的方式將問題轉化為二次函數(shù)的最值的求解,從而求得所求的最大值;②利用中點坐標公式求得,則可得直線的方程;聯(lián)立直線與橢圓方程,從而可求解出點坐標,進而得到直線方程,與直線聯(lián)立解得坐標,從而可得定直線.
(1) 由橢圓方程知:,
離心率:
又橢圓中,,
,又,解得:
(2)①當直線與軸重合時,三點共線,不符合題意
故設直線的方程為:且
設,
由(1)知橢圓的方程為:
聯(lián)立方程消去得:
即:
解得:,,
又
令
,此時
面積的最大值為:
②由①知:
直線的斜率:
則直線的方程為:
聯(lián)立方程消去得:,解得:
則直線的方程為:
聯(lián)立直線和的方程,解得:
點在定直線上運動
科目:高中數(shù)學 來源: 題型:
【題目】為了調查某生產線上質量監(jiān)督員甲是否在現(xiàn)場對產品質量好壞有無影響,現(xiàn)統(tǒng)計數(shù)據如下:質量監(jiān)督員甲在現(xiàn)場時,1 000件產品中合格品有990件,次品有10件,甲不在現(xiàn)場時,500件產品中有合格品490件,次品有10件.
(1)補充下面列聯(lián)表,并初步判斷甲在不在現(xiàn)場與產品質量是否有關:
合格品數(shù)/件 | 次品數(shù)/件 | 總數(shù)/件 | |
甲在現(xiàn)場 | 990 | ||
甲不在現(xiàn)場 | 10 | ||
總數(shù)/件 |
(2)用獨立性檢驗的方法判斷能否在犯錯誤的概率不超過0.15的前提下認為“甲在不在現(xiàn)場與產品質量有關”?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知偶函數(shù)在區(qū)間上單調遞增,且滿,給出下列判斷:
①;②在上是減函數(shù);③的圖象關于直線對稱;
④函數(shù)在處取得最大值;⑤函數(shù)沒有最小值
其中判斷正確的序號_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線上的點均在曲線外,且對上任意一點,到直線的距離等于該點與曲線上點的距離的最小值.
(1)求動點的軌跡的方程;
(2)過點的直線與曲線交于不同的兩點、,過點的直線與曲線交于另一點,且直線過點,求證:直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)的定義域是(0,+∞),且對任意正實數(shù)x,y都有f(xy)=f(x)+f(y)恒成立,已知f(2)=1,且x>1時,f(x)>0.
(1)求f()的值;
(2)判斷y=f(x)在(0,+∞)上的單調性并給出證明;
(3)解不等式f(2x)>f(8x-6)-1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列結論中:
①定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是增函數(shù),在區(qū)間[0,+∞)上也是增函數(shù),則函數(shù)f(x)在R上是增函數(shù);②若f(2)=f(-2),則函數(shù)f(x)不是奇函數(shù);③函數(shù)y=x-0.5是(0,1)上的減函數(shù);④對應法則和值域相同的函數(shù)的定義域也相同;⑤若x0是二次函數(shù)y=f(x)的零點,且m<x0<n,那么f(m)f(n)<0一定成立.
寫出上述所有正確結論的序號:_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付,某線路公交車隊統(tǒng)計了活動剛推出一周內每一天使用掃碼支付的人次,用x表示活動推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),繪制了如圖所示的散點圖:
(I)根據散點圖判斷在推廣期內,與(c,d為為大于零的常數(shù))哪一個適宜作為掃碼支付的人次y關于活動推出天數(shù)x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(I)的判斷結果求y關于x的回歸方程,并預測活動推出第8天使用掃碼支付的人次.
參考數(shù)據:
4 | 62 | 1.54 | 2535 | 50.12 | 140 | 3.47 |
其中,
附:對于一組數(shù)據,,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,,,,.
(1)求證:;
(2)若,,為的中點.
(i)過點作一直線與平行,在圖中畫出直線并說明理由;
(ii)求平面將三棱錐分成的兩部分體積的比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著科技的發(fā)展,網絡已逐漸融入了人們的生活.網購是非常方便的購物方式,為了了解網購在我市的普及情況,某調查機構進行了有關網購的調查問卷,并從參與調查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)
經常網購 | 偶爾或不用網購 | 合計 | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合計 |
(1)完成上表,并根據以上數(shù)據判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關?
(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經常網購的概率;
②將頻率視為概率,從我市所有參與調查的市民中隨機抽取10人贈送禮品,記其中經常網購的人數(shù)為,求隨機變量的數(shù)學期望和方差.
參考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com