已知一次函數(shù)y=-2x+6與反比例函數(shù)y=
k
x
(k≠0).
(1)若一次函數(shù)和反比例函數(shù)圖象交于點(diǎn)(-1,m),求m和k的值;
(2)當(dāng)k=4時(shí),設(shè)兩個(gè)函數(shù)圖象交點(diǎn)分別為A和B,試求△AOB的面積.
考點(diǎn):一次函數(shù)的性質(zhì)與圖象
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意,先求m=-2×(-1)+6=8,再代入反比例函數(shù)得8=
k
-1
;
(2)當(dāng)k=4時(shí),聯(lián)立方程得,
y=-2x+6
y=
4
x
,從而解出A,B坐標(biāo),從而求面積.
解答: 解:(1)由題意,m=-2×(-1)+6=8;
8=
k
-1
;故k=-8;
(2)當(dāng)k=4時(shí),聯(lián)立方程得,
y=-2x+6
y=
4
x
,解得,x=1,y=4或x=2,y=2;
則OB的直線方程為x-y=0;
|OB|=2
2
;
點(diǎn)A到直線x-y=0的距離d=
|1-4|
2
=
3
2
2
;
故△AOB的面積S=
1
2
×2
2
×
3
2
2
=3.
點(diǎn)評(píng):本題考查了函數(shù)的性質(zhì)的應(yīng)用及三角形面積公式應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平行四邊形ABCD中,AB=4,AD=2,∠BAD=60°,若
AM
=
1
4
AB
+m
AD
(0<m<1),則
MA
MB
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m、n是平面α內(nèi)的兩條不同直線,l1、l2是平面β內(nèi)的兩條相交直線,則α∥β的一個(gè)充分而不必要的條件是( 。
A、m∥β且 l1∥α
B、m∥l1且 n∥l2
C、m∥β且 n∥β
D、m∥β且 n∥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=
1
2
cos3°-
3
2
sin3°,b=
2tan25°
1+tan225°
,c=
1+cos50°
2
,則有( 。
A、a>b>c
B、b<c<a
C、a<b<c
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(0,-1),B(-2a,0),C(1,1),D(2,4),若直線AB與直線CD垂直,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x+
a
x

(1)判斷f(x)的奇偶性
(2)若f(x)在(1,+∞)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,已知a1=
1
3
,a2+a5=4,an=31,則n為( 。
A、50B、49C、48D、47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足|x-2|≤y≤a,(a∈(0,+∞)),且z=2x+y的最大值為10,則a的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(0,1)的直線與拋物線y2=4x僅有一個(gè)公共點(diǎn),則滿足條件的直線共有( 。l.
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案