分析 可先求出$|\overrightarrow{a}|=2,|\overrightarrow|=\frac{2}{\sqrt{3}}$,$\overrightarrow{a}•\overrightarrow=\frac{2\sqrt{3}}{3}$,這樣即可根據(jù)$cos<\overrightarrow{a},\overrightarrow>=\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$求出$cos<\overrightarrow{a},\overrightarrow>$的值,從而得出向量$\overrightarrow{a},\overrightarrow$的夾角.
解答 解:$|\overrightarrow{a}|=\sqrt{3+1}=2$,$|\overrightarrow|=\sqrt{1+\frac{1}{3}}=\frac{2}{\sqrt{3}}$,$\overrightarrow{a}•\overrightarrow=\sqrt{3}-\frac{\sqrt{3}}{3}=\frac{2\sqrt{3}}{3}$;
∴$cos<\overrightarrow{a},\overrightarrow>=\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$\frac{\frac{2\sqrt{3}}{3}}{2×\frac{2}{\sqrt{3}}}=\frac{1}{2}$;
又$0≤<\overrightarrow{a},\overrightarrow>≤π$;
∴$\overrightarrow{a},\overrightarrow$的夾角為$\frac{π}{3}$.
故答案為:2,$\frac{π}{3}$.
點(diǎn)評(píng) 考查根據(jù)向量坐標(biāo)求向量長(zhǎng)度的方法,向量數(shù)量積的坐標(biāo)運(yùn)算,以及向量夾角的余弦公式,向量夾角的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{8}$ | B. | 1-$\frac{π}{8}$ | C. | $\frac{π}{4}$ | D. | 1-$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,5) | B. | (1,1) | C. | (3,1) | D. | (3,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -1 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com